Strength of polynomials via polynomial functors

Arthur Bik

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Student/Postdoc Working Geometry Seminar Texas A&M

30 December 2020

MAX-PLANCK-GESELLSCHAFT

Let f be a homogeneous polynomial of degree $d \ge 2$.

Definition

The *strength* of f is the minimal number $str(f) := r \ge 0$ such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$.

Defined by Ananyan and Hochster in order to prove Stillman's Conjecture. Used by Erman, Sam and Snowden in their work on big polynomial rings. Plays a big role when studying the geometry of polynomial functors. Has also been defined for sections of line bundles over algebraic varieties by Ballico and Ventura.

Let f be a homogeneous polynomial of degree $d \ge 2$.

Definition

The *strength* of f is the minimal number $str(f) := r \ge 0$ such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$.

Theorem (Ballico-B-Oneto-Ventura)

The set

$$\{f \in \mathbb{C}[x_1, \dots, x_n]_4 \mid \operatorname{str}(f) \le 3\}$$

is not Zariski-closed for $n \gg 0$.

Example (d = 2)

Let

$$f = (x_1, \dots, x_n) \cdot A \cdot (x_1, \dots, x_n)^\top, \quad A \in \mathbb{C}^{n \times n} \text{ with } A^\top = A$$

be a homogeneous polynomial of degree 2. By applying a coordinate transformation (or replacing A be a congruent matrix), we may assume that $A = \text{Diag}(\mathbf{1}_k, \mathbf{0}_{n-k})$ and $f = x_1^2 + \ldots + x_k^2$.

If
$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$
 with
 $g_j = (x_1, \ldots, x_n) \cdot v_j^\top$ and $h_j = w_j \cdot (x_1, \ldots, x_n)^\top$,
then $A = (v_1^\top w_1 + w_1^\top v_1) + \ldots + (v_r^\top w_r + w_r^\top v_r)$. So $k \le 2r$.
As $x_j^2 + x_{j+1}^2 = (x_j + ix_{j+1})(x_j - ix_{j+1})$, we have $\operatorname{str}(f) = \lceil k/2 \rceil$.

Definition

The slice rank of f is the minimal number $\mathrm{slrk}(f):=r\geq 0$ such that

$$f = g_1 \cdot \ell_1 + \ldots + g_r \cdot \ell_r$$

with g_1, \ldots, g_r of degree d-1 and ℓ_1, \ldots, ℓ_r linear.

Proposition (Tao-Sawin, Derksen-Eggermont-Snowden) The set

$$\{f \in \mathbb{C}[x_1, \dots, x_n]_d \mid \operatorname{slrk}(f) \le k\}$$

is Zariski-closed for all $d \ge 2$, $n \ge 1$ and $k \ge 0$.

Proof.

It is the cone of the projection of $\{([f], V) \in \mathbb{P}(\mathbb{C}[x_1, \dots, x_n]_d) \times \mathbb{G}r(n-k, n)\} \mid f(V) = 0\}$

Definition

The slice rank of f is the minimal number $\mathrm{slrk}(f):=r\geq 0$ such that

$$f = g_1 \cdot \ell_1 + \ldots + g_r \cdot \ell_r$$

with g_1, \ldots, g_r of degree d-1 and ℓ_1, \ldots, ℓ_r linear.

Theorem

For $d\geq 3$ and $n\geq 1,$ the generic slice rank in $\mathbb{C}[x_1,\ldots,x_n]_d$ is

$$\operatorname{slrk}_{d,n}^{\circ} := \min\left\{ r \in \mathbb{Z} \left| r(n-r) \ge \begin{pmatrix} d-r+n-1\\ d \end{pmatrix} \right\}.$$

Conjecture

The generic strength and generic slice rank coincide.

Example (Fermat polynomials)

Take
$$f = x_1^d + \ldots + x_n^d$$
 with $d \ge 2$.

As $x_j^d + x_{j+1}^d$ is reducible, we have $\operatorname{str}(f) \leq \lceil n/2 \rceil$.

Ananyan-Hochster Trick: If $f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$, then

$$\operatorname{Sing}\{f=0\}=\{0\}$$

contains the variety defined by $g_1, h_1, \ldots, g_r, h_r$ and hence has codimension $\leq 2r$. So we find $\operatorname{str}(f) \geq \lceil n/2 \rceil$.

Theorem (Ballico-B-Oneto-Ventura)

The set

$$\{f \in \mathbb{C}[x_1, \dots, x_n]_4 \mid \operatorname{str}(f) \le 3\}$$

is not Zariski-closed for $n \gg 0$.

Question

Is the set

$$\{f \in \mathbb{C}[x_1, \dots, x_n]_d \mid \operatorname{str}(f) \le 2\}$$

Zariski-closed for all $d \ge 2$ and $n \ge 1$?

Proof is non-constructive and uses polynomial functors.

Let Vec be the category of finite-dimensional vector spaces.

Definition

A functor $P \colon \operatorname{Vec} \to \operatorname{Vec}$ sends

$$V \mapsto P(V)$$

$$(\ell \colon V \to W) \mapsto (P(\ell) \colon P(V) \to P(W))$$

such that $P(\operatorname{id}_V) = \operatorname{id}_{P(V)}$ and $P(\ell_1 \circ \ell_2) = P(\ell_1) \circ P(\ell_2)$.

Examples

Take $U \in \text{Vec fixed}$.

- $C_U : V \mapsto U, \ell \mapsto \mathrm{id}_U$
- $T \colon V \mapsto V, \ell \mapsto \ell$

You can add and multiply two functors $P, Q: \text{Vec} \to \text{Vec}.$ $(P \oplus Q)(V) = P(V) \oplus Q(V), \quad (P \otimes Q)(V) = P(V) \otimes Q(V)$ $(P \oplus Q)(\ell) = P(\ell) \oplus Q(\ell), \quad (P \otimes Q)(\ell) = P(\ell) \otimes Q(\ell)$

You can take subfunctors and quotients: We have $Q \subseteq P$ when $Q(V) \subseteq P(V)$ and $P(\ell)$ restricts to $Q(\ell)$. In this case, we also get P/Q.

Definition

A polynomial functor is a functor $\text{Vec} \rightarrow \text{Vec}$ obtained from T and the C_U via addition, multiplication, subfunctors and quotients.

Examples

- Square matrices: $V \mapsto V \otimes V$
- Tensors: $V \mapsto V \otimes \cdots \otimes V$
- Polynomials: $V \mapsto S^d V$

Definition

Let P,Q be polynomial functors. A morphism $\alpha\colon Q\to P$ is a family $(\alpha_V\colon Q(V)\to P(V))_{V\in \mathrm{Vec}}$ of polynomial maps such that

$$Q(V) \xrightarrow{\alpha_{V}} P(V)$$

$$\downarrow Q(\ell) \qquad \qquad \downarrow P(\ell)$$

$$Q(W) \xrightarrow{\alpha_{W}} P(W)$$

commutes for all linear maps $\ell \colon V \to W$. **Definition**

A (closed) subset $X \subseteq P$ sends

$$V \mapsto (closed)$$
 subset $X(V) \subseteq P(V)$

such that $P(\ell)(X(V)) \subseteq X(W)$ for all linear maps $\ell \colon V \to W$.

Example

We have a morphism $C_{\mathbb{C}^{n\times(n-1)}}\oplus T^{n-1}\to T^n$ defined by:

$$\mathbb{C}^{n \times (n-1)} \oplus V^{n-1} \ni (A, v_1, \dots, v_{n-1}) \mapsto A \cdot (v_1, \dots, v_n)^\top \in V^n$$

Its image is the closed subset of T^n consisting of all linearly dependent n-tuples of vectors.

Example

We have a morphism $T^{2k} \rightarrow T \otimes T$ defined by:

$$V^{2k} \ni (v_1, w_1, \dots, v_k, w_k) \mapsto v_1 \otimes w_1 + \dots + v_k \otimes w_k \in V \otimes V$$

Its image is the closed subset of $T\otimes T$ consisting of all matrices of rank $\leq k.$

\square

Example

We have a morphism $(S^1)^r \oplus (S^{d-1})^r \to S^d$ defined by:

$$(\ell_1,\ldots,\ell_r,g_1,\ldots,g_r)\mapsto \ell_1\cdot g_1+\ldots+\ell_r\cdot g_r$$

Its image is the closed subset of S^d consisting of all homogeneous polynomials of degree d and slice rank $\leq r$.

Example

The subset of $T^{\otimes n}$ consisting of tensors with tensor rank $\leq k$.

Example

The subset of S^d consisting of polynomials with strength $\leq r$.

Let P, Q be polynomial functors. Write $Q \prec P$ when Q_d is a quotient of P_d for d maximal with $Q_d \not\cong P_d$.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then X = P or there are polynomial functors $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

Consequence

Any closed subset of $T \otimes T$ consists of rank $\leq k \leq \infty$ matrices.

Consequence (B-Draisma-Eggermont)

Any closed subset of S^d consists of strength $\leq k$ polynomials.

Consequence (Draisma)

Any polynomial functor P is Noetherian.

Back to our goal

The homogeneous polynomials of degree 4 and strength ≤ 3 form a subset of $S^4.$ This subset is the union of the images of the morphisms

$$\alpha_k \colon (S^1 \oplus S^3)^{\oplus k} \oplus (S^2 \oplus S^2)^{\oplus 3-k} \to S^4$$

$$((\ell_i, q_i)_i, (g_j, h_j)_j) \mapsto \sum_{i=1}^k \ell_i \cdot q_i + \sum_{j=1}^{3-k} g_j \cdot h_j$$
where $k = 0, 1, 2, 3$

over k = 0, 1, 2, 3.

Goal

Prove that the subset $\bigcup_{k=0}^{3} \operatorname{im}(\alpha_k)$ of S^4 is not closed.

Idea

Consider polynomials of the form $x^2f+y^2g+u^2h+v^2q$ with $x,y,u,v\in S^1$ and $f,g,h,q\in S^2.$

 $\begin{array}{rcl} \text{Consider the morphism} \\ \beta \colon (S^1)^{\oplus 4} \oplus (S^2)^{\oplus 4} & \to & S^4 \\ (x,y,u,v,f,g,h,q) & \mapsto & x^2f + y^2g + u^2h + v^2q \end{array}$

Lemma

We have $\operatorname{im}(\beta) \subseteq \overline{\operatorname{im}(\alpha_0)}$.

Proof.

The family of strength ≤ 3 polynomials

$$\frac{1}{t}\left((x^2+tg)(y^2+tf) - (u^2-tq)(v^2-th) - (xy+uv)(xy-uv)\right)$$

converges to $x^2f + y^2g + u^2h + v^2q$ as $t \to 0$.

Goal

Prove that $\operatorname{im}(\beta) \not\subseteq \bigcup_{k=1}^{3} \operatorname{im}(\alpha_k)$.

Let P be a polynomial functor.

Definition

We define P_{∞} as the inverse limit of the sequence

$$\cdots \xrightarrow{P(\pi_4)} P(\mathbb{C}^4) \xrightarrow{P(\pi_3)} P(\mathbb{C}^3) \xrightarrow{P(\pi_2)} P(\mathbb{C}^2) \xrightarrow{P(\pi_1)} P(\mathbb{C}^1)$$

where $\pi_n: \mathbb{C}^{n+1} \to \mathbb{C}^n$ is the projection forgetting the last coordinate.

Example

Take
$$P = T^n$$
. Then $P_{\infty} = (\mathbb{C}^{\mathbb{N}})^n$.

Example

Take
$$P = T \otimes T$$
. Then $P_{\infty} = \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$.

Polynomial functors: Inverse limits

A morphism $\alpha \colon Q \to P$ induces a map $\alpha_{\infty} \colon Q_{\infty} \to P_{\infty}$.

Example

The morphism $T^{2k} \rightarrow T \otimes T$ defined by

$$(v_1, w_1, \ldots, v_k, w_k) \mapsto v_1 \otimes w_1 + \ldots + v_k \otimes w_k$$

induces a map $(\mathbb{C}^{\mathbb{N}})^{2k} \to \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ (defined the same).

Let $p \in P_{\infty}$ be a point with projections $p_n \in P(\mathbb{C}^n)$.

Lemma

We have $p \in im(\alpha_{\infty})$ if and only if $p_n \in im(\alpha_{\mathbb{C}^n})$ for all $n \ge 1$.

Proof.

Follows from a theorem by Lang stating that a countable system of polynomial equations over an uncountable field, any finite subsystem of which has a solution, has a solution. $\hfill\square$

Let P be a polynomial functor and $p \in P_{\infty}$ be a point.

Definition

We say that the point p is GL_{∞} -generic if $\overline{GL_{\infty}} \cdot p = P_{\infty}$. Otherwise, the point is called degenerate.

Lemma

For $d \geq 2$, the set Ω_d of degenerate points in S^d_{∞} equals the subspace of points with finite strength.

Proof.

Follows from the Dichotomy Theorem.

Definition

A system of variables consists of a basis of S^d_{∞}/Ω_d over all $d \ge 1$.

Polynomial functors: Systems of variables

Let R, Q, P be direct sums of copies of S^d with $d \ge 1$. Let $\beta \colon Q \to P$ and $\alpha \colon R \to P$ be morphisms. Let $q \in Q_{\infty}$ and $r \in R_{\infty}$ be points.

Lemma

Suppose that q is $\operatorname{GL}_{\infty}$ generic and $p := \beta_{\infty}(q) = \alpha_{\infty}(r)$. Then $\beta = \alpha \circ \gamma$ for some morphism $\gamma \colon Q \to R$.

Proof.

Extend q to a system of variables. Express r in these variables:

$$\begin{split} r &= \delta(q,q'), \quad \delta \colon Q \oplus Q' \to R, \quad q' \in Q'_\infty \\ \text{We have } \beta_\infty(q) &= p = (\alpha \circ \delta)_\infty(q,q'). \text{ So } p = (\alpha \circ \delta)_\infty(q,0). \end{split}$$

Take
$$\gamma = \delta(-, 0)$$
. Then $\beta = \alpha \circ \gamma$ since this holds on $\operatorname{GL}_{\infty} \cdot q$.

The proof

We have the morphisms $\alpha_k \colon (S^1 \oplus S^3)^{\oplus k} \oplus (S^2 \oplus S^2)^{\oplus 3-k} \to S^4$ $((\ell_i, q_i)_i, (g_j, h_j)_j) \mapsto \sum_{i=1}^k \ell_i \cdot q_i + \sum_{i=1}^{3-k} g_j \cdot h_j$

for $\boldsymbol{k}=0,1,2,3$ and the morphism

$$\begin{split} \beta \colon (S^1)^{\oplus 4} \oplus (S^2)^{\oplus 4} &\to S^4 \\ (x, y, u, v, f, g, h, q) &\mapsto x^2 f + y^2 g + u^2 h + v^2 q \end{split}$$

Goal

Prove that $\beta_{\infty}(x, y, u, v, f, g, h, q) \notin \bigcup_{k=0}^{3} \operatorname{im}(\alpha_{k,\infty}).$

Enough

Prove that $\beta = \alpha_k \circ \gamma$ has no solution for k = 0, 1, 2, 3.

The proof

Lemma

The equation $\beta = \alpha_0 \circ \gamma$ has no solution.

Proof.

We have to prove that

$$x^{2}f + y^{2}g + u^{2}h + v^{2}q \neq x_{1}q_{1} + x_{2}q_{2} + x_{3}q_{3}$$

with x_i, q_i polynomials in x, y, u, v, f, g, h, q of degrees 1, 3.

Coefficients of f, g, h, q on the left-hand side are x^2, y^2, u^2, v^2 .

Coefficients of f, g, h, q on right-hand side are contained in the ideal $(x_1, x_2, x_3) \subseteq \Bbbk[x, y, u, v].$

As $x^2, y^2, u^2, v^2 \in (x_1, x_2, x_3)$ cannot hold, we have inequality.

The proof

Now we know that $\beta = \alpha_k \circ \gamma$ has no solution for k = 0, 1, 2, 3.

So $\beta_{\infty}(x, y, u, v, f, g, h, q) \notin \bigcup_{k=0}^{3} \operatorname{im}(\alpha_{k,\infty})$ for $\operatorname{GL}_{\infty}$ -generic (x, y, u, v, f, g, h, q).

So $\beta_{\mathbb{C}^n}(x_n, y_n, u_n, v_n, f_n, g_n, h_n, q_n) \notin \bigcup_{k=0}^3 \operatorname{im}(\alpha_{k,\mathbb{C}^n})$ for $n \gg 0$.

So the set

$$\{f \in \mathbb{C}[x_1,\ldots,x_n]_4 \mid \operatorname{str}(f) \leq 3\}$$

is not Zariski-closed for $n \gg 0$.

Thanks for your attention!

References

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura *The set of forms with bounded strength is not closed* preprint

Arthur Bik

Strength and Noetherianity for infinite Tensors PhD thesis, University of Bern, 2020

- Arthur Bik, Jan Draisma, Rob H. Eggermont *Polynomials and tensors of bounded strength* Commun. Contemp. Math. 21 (2019), no. 7, 1850062
- Arthur Bik, Alessandro Oneto On the strength of general polynomials preprint