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The strength of polynomials

Let f be a homogeneous polynomial of degree d ≥ 2.

Definition
The strength of f is the minimal number str(f) := r ≥ 0 such that

f = g1 · h1 + . . .+ gr · hr

with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.

Defined by Ananyan and Hochster in order to prove Stillman’s
Conjecture. Used by Erman, Sam and Snowden in their work on
big polynomial rings. Plays a big role when studying the geometry
of polynomial functors. Has also been defined for sections of line
bundles over algebraic varieties by Ballico and Ventura.
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The strength of polynomials

Let f be a homogeneous polynomial of degree d ≥ 2.

Definition
The strength of f is the minimal number str(f) := r ≥ 0 such that

f = g1 · h1 + . . .+ gr · hr

with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.

Theorem (Ballico-B-Oneto-Ventura)
The set

{f ∈ C[x1, . . . , xn]4 | str(f) ≤ 3}

is not Zariski-closed for n� 0.
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The strength of polynomials

Example (d = 2)
Let

f = (x1, . . . , xn) ·A · (x1, . . . , xn)>, A ∈ Cn×n with A> = A

be a homogeneous polynomial of degree 2. By applying a
coordinate transformation (or replacing A be a congruent matrix),
we may assume that A = Diag(1k,0n−k) and f = x2

1 + . . .+ x2
k.

If f = g1 · h1 + . . .+ gr · hr with

gj = (x1, . . . , xn) · v>j and hj = wj · (x1, . . . , xn)>,

then A = (v>1 w1 + w>1 v1) + . . .+ (v>r wr + w>r vr). So k ≤ 2r.

As x2
j + x2

j+1 = (xj + ixj+1)(xj − ixj+1), we have str(f) = dk/2e.
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The strength of polynomials

Definition
The slice rank of f is the minimal number slrk(f) := r ≥ 0 such
that

f = g1 · `1 + . . .+ gr · `r
with g1, . . . , gr of degree d− 1 and `1, . . . , `r linear.

Proposition (Tao-Sawin, Derksen-Eggermont-Snowden)
The set

{f ∈ C[x1, . . . , xn]d | slrk(f) ≤ k}

is Zariski-closed for all d ≥ 2, n ≥ 1 and k ≥ 0.

Proof.
It is the cone of the projection of
{([f ], V ) ∈ P(C[x1, . . . , xn]d)×Gr(n− k, n)} | f(V ) = 0}

Strength of polynomials via polynomial functors Arthur Bik



The strength of polynomials

Definition
The slice rank of f is the minimal number slrk(f) := r ≥ 0 such
that

f = g1 · `1 + . . .+ gr · `r
with g1, . . . , gr of degree d− 1 and `1, . . . , `r linear.

Theorem
For d ≥ 3 and n ≥ 1, the generic slice rank in C[x1, . . . , xn]d is

slrk◦d,n := min
{
r ∈ Z

∣∣∣∣∣ r(n− r) ≥
(
d− r + n− 1

d

)}
.
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The strength of polynomials

Conjecture
The generic strength and generic slice rank coincide.

Example (Fermat polynomials)
Take f = xd1 + . . .+ xdn with d ≥ 2.

As xdj + xdj+1 is reducible, we have str(f) ≤ dn/2e.

Ananyan-Hochster Trick:
If f = g1 · h1 + . . .+ gr · hr, then

Sing{f = 0} = {0}

contains the variety defined by g1, h1, . . . , gr, hr and hence has
codimension ≤ 2r. So we find str(f) ≥ dn/2e.
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The strength of polynomials

Theorem (Ballico-B-Oneto-Ventura)
The set

{f ∈ C[x1, . . . , xn]4 | str(f) ≤ 3}

is not Zariski-closed for n� 0.

Question
Is the set

{f ∈ C[x1, . . . , xn]d | str(f) ≤ 2}

Zariski-closed for all d ≥ 2 and n ≥ 1?

Proof is non-constructive and uses polynomial functors.

Strength of polynomials via polynomial functors Arthur Bik



Polynomial functors: Definition

Let Vec be the category of finite-dimensional vector spaces.

Definition
A functor P : Vec→ Vec sends

V 7→ P (V )
(` : V →W ) 7→ (P (`) : P (V )→ P (W ))

such that P (idV ) = idP (V ) and P (`1 ◦ `2) = P (`1) ◦ P (`2).

Examples
Take U ∈ Vec fixed.
• CU : V 7→ U, ` 7→ idU
• T : V 7→ V, ` 7→ `
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Polynomial functors: Definition

You can add and multiply two functors P,Q : Vec→ Vec.
(P ⊕Q)(V ) = P (V )⊕Q(V ), (P ⊗Q)(V ) = P (V )⊗Q(V )
(P ⊕Q)(`) = P (`)⊕Q(`), (P ⊗Q)(`) = P (`)⊗Q(`)

You can take subfunctors and quotients:
We have Q ⊆ P when Q(V ) ⊆ P (V ) and P (`) restricts to Q(`).
In this case, we also get P/Q.

Definition
A polynomial functor is a functor Vec→ Vec obtained from T and
the CU via addition, multiplication, subfunctors and quotients.

Examples
• Square matrices: V 7→ V ⊗ V
• Tensors: V 7→ V ⊗ · · · ⊗ V
• Polynomials: V 7→ SdV
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Polynomial functors: Topology

Definition
Let P,Q be polynomial functors. A morphism α : Q→ P is a
family (αV : Q(V )→ P (V ))V ∈Vec of polynomial maps such that

Q(V )

Q(`)
��

αV // P (V )

P (`)
��

Q(W ) αW // P (W )

commutes for all linear maps ` : V →W .
Definition
A (closed) subset X ⊆ P sends

V 7→ (closed) subset X(V ) ⊆ P (V )

such that P (`)(X(V )) ⊆ X(W ) for all linear maps ` : V →W .
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Polynomial functors: Topology

Example
We have a morphism CCn×(n−1) ⊕ Tn−1 → Tn defined by:

Cn×(n−1)⊕V n−1 3 (A, v1, . . . , vn−1) 7→ A · (v1, . . . , vn)> ∈ V n

Its image is the closed subset of Tn consisting of all linearly
dependent n-tuples of vectors.

Example
We have a morphism T 2k → T ⊗ T defined by:

V 2k 3 (v1, w1, . . . , vk, wk) 7→ v1 ⊗ w1 + . . .+ vk ⊗ wk ∈ V ⊗ V

Its image is the closed subset of T ⊗ T consisting of all matrices of
rank ≤ k.
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Polynomial functors: Topology

Example
We have a morphism (S1)r ⊕ (Sd−1)r → Sd defined by:

(`1, . . . , `r, g1, . . . , gr) 7→ `1 · g1 + . . .+ `r · gr

Its image is the closed subset of Sd consisting of all homogeneous
polynomials of degree d and slice rank ≤ r.

Example
The subset of T⊗n consisting of tensors with tensor rank ≤ k.

Example
The subset of Sd consisting of polynomials with strength ≤ r.
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Polynomial functors: The dichotomy

Let P,Q be polynomial functors. Write Q ≺ P when Qd is a
quotient of Pd for d maximal with Qd 6∼= Pd.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden)
Let X ⊆ P be a closed subset. Then X = P or there are
polynomial functors Q1, . . . , Qk ≺ P and αi : Qi → P such that
X ⊆

⋃
i im(αi).

Consequence
Any closed subset of T ⊗ T consists of rank ≤ k ≤ ∞ matrices.

Consequence (B-Draisma-Eggermont)
Any closed subset of Sd consists of strength ≤ k polynomials.

Consequence (Draisma)
Any polynomial functor P is Noetherian.
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Back to our goal

The homogeneous polynomials of degree 4 and strength ≤ 3 form
a subset of S4. This subset is the union of the images of the
morphisms
αk : (S1 ⊕ S3)⊕k ⊕ (S2 ⊕ S2)⊕3−k → S4

((`i, qi)i, (gj , hj)j) 7→
k∑
i=1

`i · qi +
3−k∑
j=1

gj · hj

over k = 0, 1, 2, 3.

Goal
Prove that the subset

⋃3
k=0 im(αk) of S4 is not closed.

Idea
Consider polynomials of the form

x2f + y2g + u2h+ v2q

with x, y, u, v ∈ S1 and f, g, h, q ∈ S2.
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Back to our goal

Consider the morphism
β : (S1)⊕4 ⊕ (S2)⊕4 → S4

(x, y, u, v, f, g, h, q) 7→ x2f + y2g + u2h+ v2q

Lemma
We have im(β) ⊆ im(α0).

Proof.
The family of strength ≤ 3 polynomials

1
t

(
(x2 + tg)(y2 + tf)− (u2 − tq)(v2 − th)− (xy + uv)(xy − uv)

)
converges to x2f + y2g + u2h+ v2q as t→ 0.

Goal
Prove that im(β) 6⊆

⋃3
k=1 im(αk).
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Polynomial functors: Inverse limits

Let P be a polynomial functor.

Definition
We define P∞ as the inverse limit of the sequence

· · · P (π4)−−−→ P (C4) P (π3)−−−→ P (C3) P (π2)−−−→ P (C2) P (π1)−−−→ P (C1)

where πn : Cn+1 → Cn is the projection forgetting the last
coordinate.

Example
Take P = Tn. Then P∞ = (CN)n.

Example
Take P = T ⊗ T . Then P∞ = CN×N.
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Polynomial functors: Inverse limits

A morphism α : Q→ P induces a map α∞ : Q∞ → P∞.

Example
The morphism T 2k → T ⊗ T defined by

(v1, w1, . . . , vk, wk) 7→ v1 ⊗ w1 + . . .+ vk ⊗ wk

induces a map (CN)2k → CN×N (defined the same).

Let p ∈ P∞ be a point with projections pn ∈ P (Cn).

Lemma
We have p ∈ im(α∞) if and only if pn ∈ im(αCn) for all n ≥ 1.

Proof.
Follows from a theorem by Lang stating that a countable system of
polynomial equations over an uncountable field, any finite
subsystem of which has a solution, has a solution.
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Polynomial functors: Systems of variables

Let P be a polynomial functor and p ∈ P∞ be a point.

Definition
We say that the point p is GL∞-generic if GL∞·p = P∞.
Otherwise, the point is called degenerate.

Lemma
For d ≥ 2, the set Ωd of degenerate points in Sd∞ equals the
subspace of points with finite strength.
Proof.
Follows from the Dichotomy Theorem.

Definition
A system of variables consists of a basis of Sd∞/Ωd over all d ≥ 1.
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Polynomial functors: Systems of variables

Let R,Q, P be direct sums of copies of Sd with d ≥ 1.
Let β : Q→ P and α : R→ P be morphisms.
Let q ∈ Q∞ and r ∈ R∞ be points.

Lemma
Suppose that q is GL∞ generic and p := β∞(q) = α∞(r).
Then β = α ◦ γ for some morphism γ : Q→ R.
Proof.
Extend q to a system of variables. Express r in these variables:

r = δ(q, q′), δ : Q⊕Q′ → R, q′ ∈ Q′∞
We have β∞(q) = p = (α ◦ δ)∞(q, q′). So p = (α ◦ δ)∞(q, 0).

Take γ = δ(−, 0). Then β = α ◦ γ since this holds on GL∞·q.
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The proof

We have the morphisms
αk : (S1 ⊕ S3)⊕k ⊕ (S2 ⊕ S2)⊕3−k → S4

((`i, qi)i, (gj , hj)j) 7→
k∑
i=1

`i · qi +
3−k∑
j=1

gj · hj

for k = 0, 1, 2, 3 and the morphism

β : (S1)⊕4 ⊕ (S2)⊕4 → S4

(x, y, u, v, f, g, h, q) 7→ x2f + y2g + u2h+ v2q

Goal
Prove that β∞(x, y, u, v, f, g, h, q) 6∈

⋃3
k=0 im(αk,∞).

Enough
Prove that β = αk ◦ γ has no solution for k = 0, 1, 2, 3.
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The proof

Lemma
The equation β = α0 ◦ γ has no solution.
Proof.
We have to prove that

x2f + y2g + u2h+ v2q 6= x1q1 + x2q2 + x3q3

with xi, qi polynomials in x, y, u, v, f, g, h, q of degrees 1, 3.

Coefficients of f, g, h, q on the left-hand side are x2, y2, u2, v2.

Coefficients of f, g, h, q on right-hand side are contained in the
ideal (x1, x2, x3) ⊆ k[x, y, u, v].

As x2, y2, u2, v2 ∈ (x1, x2, x3) cannot hold, we have inequality.
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The proof

Now we know that β = αk ◦ γ has no solution for k = 0, 1, 2, 3.

So β∞(x, y, u, v, f, g, h, q) 6∈
⋃3
k=0 im(αk,∞) for GL∞-generic

(x, y, u, v, f, g, h, q).

So βCn(xn, yn, un, vn, fn, gn, hn, qn) 6∈
⋃3
k=0 im(αk,Cn) for n� 0.

So the set
{f ∈ C[x1, . . . , xn]4 | str(f) ≤ 3}

is not Zariski-closed for n� 0.

Thanks for your attention!
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