Strength of Polynomials

Arthur Bik

_- Max-Planck-Institut für Mathematik in den Naturwissenschaften

TAPIRS Seminar

29 October 2021

The strength of polynomials

Let f be a homogeneous polynomial of degree $d \geq 2$ over \mathbb{C}.

Definition

The strength of f is the minimal number $\operatorname{str}(f):=r \geq 0$ such that

$$
f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

with $g_{1}, h_{1}, \ldots, g_{r}, h_{r}$ homogeneous polynomials of degree $\leq d-1$.

Question

What is the strength of $f:=x^{2}+y^{2}+z^{2}$?

- We have $\operatorname{str}(f) \leq 3$ since $f=x \cdot x+y \cdot y+z \cdot z$.
- We have $\operatorname{str}(f)>0$ since $f \neq 0$.
- We have $\operatorname{str}(f)>1$ since f is not reducible.
- We have $\operatorname{str}(f) \leq 2$ since $f=(x+i y) \cdot(x-i y)+z \cdot z$.

So $\operatorname{str}(f)=2$ (but over \mathbb{R} is would be 3).

Why care about strength?

Reason 1 - Data efficiency

A homogeneous polynomial of degree d in $n+1$ variables has

$$
\binom{n+d}{d}
$$

coefficients.

A polynomial of degree 3 in 10^{6} variables has

$$
\approx 10^{17}
$$

coefficients.

The number of coefficients in a strength decomposition is:

$$
\approx \operatorname{str}(f) \cdot 10^{12}
$$

So the strength decomposition uses $\approx 10^{5} / \operatorname{str}(f)$ times less space.

Why care about strength?

Reason 2 - Universality

Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$. For $\star, \ldots, \star \in \mathbb{C}$, the polynomial

$$
f\left(\star y_{1}+\ldots+\star y_{m}, \ldots, \star y_{1}+\ldots+\star y_{m}\right) \in \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]_{d}
$$

is a coordinate transformation of f.
Let \mathcal{P} be a property of degree- d polynomials such that f has $\mathcal{P} \Leftrightarrow$ every coordinate transformation of f has \mathcal{P}

Examples

$\mathcal{P}_{\text {triv }}$: the polynomial equals itself
$\mathcal{P}_{k} \quad$: the polynomial has strength $\leq k$
$\mathcal{P}_{\mathrm{KZ}, \ell}$: every partial derivative of the polynomial has strength $\leq \ell$
Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)
Either $\mathcal{P}=\mathcal{P}_{\text {triv }}$ or there exists a $k \geq 0$ such that

$$
f \text { has } \mathcal{P} \Rightarrow \operatorname{str}(f) \leq k
$$

Why care about strength?

Reason 3 - It is like the rank of matrices

We have a one-to-one correspondence

$$
\begin{aligned}
\left\{A \in \mathbb{C}^{n \times n} \mid A=A^{\top}\right\} & \leftrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{2} \\
A & \mapsto\left(x_{1}, \ldots, x_{n}\right) A\left(x_{1}, \ldots, x_{n}\right)^{\top} \\
\left(a_{1}, \ldots, a_{n}\right)^{\top}\left(a_{1}, \ldots, a_{n}\right) & \mapsto\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)^{2} \\
v w^{\top}+w v^{\top} & \mapsto 2 \cdot\left(x_{1}, \ldots, x_{n}\right) v \cdot\left(x_{1}, \ldots, x_{n}\right) w
\end{aligned}
$$

Write $f=\left(x_{1}, \ldots, x_{n}\right) A\left(x_{1}, \ldots, x_{n}\right)^{\top}$. Then
$\operatorname{str}(f) \leq k \quad \Leftrightarrow \quad f$ is a sum of k reducible polynomials
$\Leftrightarrow \quad A$ is a sum of k matrices of rank ≤ 2
$\Leftrightarrow \quad A$ has rank $\leq 2 k$
So $\operatorname{str}(f)=\lceil\operatorname{rk}(A) / 2\rceil$.

Example

$\operatorname{str}\left(x^{2}+y^{2}+z^{2}\right)=\left\lceil\mathrm{rk}\left(I_{3}\right) / 2\right\rceil=2$.

Basic properties of strength

How does strength compare to rank of matrices?

We can compute the rank of a matrix.
(determinants of submatrices / column- and rowoperations)
Q: How do you compute the strength of a polynomial?
The limit of a sequence of matrices of rank $\leq k$ has rank $\leq k$.
Q: Is the subset of polynomials of strength $\leq k$ closed?
An $n \times m$ matrix has maximal rank $\min (n, m)$.
Q: What is the maximal strength of a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?
A random $n \times m$ matrix has rank $\min (n, m)$.
Q: What is the strength of a random polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?

Computing the strength of a polynomial

I don't know how to do this...
Exercise Find an algorithm.

Tricks

(1) We have $\operatorname{str}(f+g) \leq \operatorname{str}(f)+\operatorname{str}(g)$.
(2) For $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$, we define the singular locus:

$$
\operatorname{Sing}(f):=\left\{\frac{\partial f}{\partial x_{1}}=\ldots=\frac{\partial f}{\partial x_{n}}=0\right\}
$$

When $f=g_{1} \cdot h_{1}+\ldots+g_{k} \cdot h_{k}$, then

$$
\left\{g_{1}=h_{1}=\ldots=g_{k}=h_{k}=0\right\} \subseteq \operatorname{Sing}(f)
$$

and so $\operatorname{dim} \operatorname{Sing}(f) \geq n-2 \operatorname{str}(f)$.
(3) Every polynomial in $\mathbb{C}[x, y]_{d}$ is reducible. Hence

$$
f \in \mathbb{C}[x, y]_{d} \Rightarrow \operatorname{str}(f) \leq 1
$$

Computing the strength of a polynomial

Example

Consider $f=x_{1}^{d}+\ldots+x_{n}^{d}$.
We have

$$
\begin{aligned}
& f= \begin{cases}\left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{d}+x_{2 k}^{d}\right) & \text { if } n=2 k \\
\left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{d}+x_{2 k}^{d}\right)+x_{2 k+1}^{d} & \text { if } n=2 k+1\end{cases} \\
& \text { and so } \operatorname{str}(f) \leq\lceil n / 2\rceil .
\end{aligned}
$$

The singular locus

$$
\operatorname{Sing}(f)=\left\{d x_{1}^{d-1}=\ldots=d x_{n}^{d-1}=0\right\}=\{(0, \ldots, 0)\} \subseteq \mathbb{C}^{n}
$$

has dimenion $0 \geq n-2 \operatorname{str}(f)$. So $\operatorname{str}(f) \geq\lceil n / 2\rceil$.
So $\operatorname{str}(f)=\lceil n / 2\rceil$.

Strength ≤ 3 is not closed

$\mathbf{Q}_{d, k, n}$: Is $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \operatorname{str}(f) \leq k\right\}$ closed?
For $k=1$, yes. (union of images of projective morphisms).
For $k=2$, I don't know. (Conjecture: yes)
For $d=2$, yes. (rank of symmetric matrices)
For $d=3$, yes. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)

The set $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{4} \mid \operatorname{str}(f) \leq 3\right\}$ is not closed for $n \gg 0$.
Consider

$$
\begin{gathered}
{ }^{1} / t\left(x^{2}+t g\right)\left(y^{2}+t f\right)-1 / t\left(u^{2}-t q\right)\left(v^{2}-t p\right)-1 / t(x y-u v)(x y+u v) \\
= \\
x^{2} f+y^{2} g+u^{2} p+v^{2} q+t(f g-p q)
\end{gathered}
$$

It has strength ≤ 3. For $t \rightarrow 0$, we get $x^{2} f+y^{2} g+u^{2} p+v^{2} q$.

Strength ≤ 3 is not closed

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .
Consider the polynomial

$$
h:=x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

where x, y, u, v have degree 1 and $\underbrace{f, g, p, q}_{\text {variables }}$ have degree 2 .

Proposition

The polynomial h has strength 4 .

Strength ≤ 3 is not closed

Definition

The strength of a polynomial $h \in \mathbb{C}[x, y, u, v, f, g, p, q]_{d}$ is the minimum number $r \geq 0$ (when this exists) such that

$$
h=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

with $g_{1}, h_{1}, \ldots, g_{r}, h_{r}$ homogeneous polynomials of degree $\leq d-1$.

Example

The polynomial

$$
f \cdot g+x \cdot\left(u h+v^{3}\right)
$$

is irreducible and hence has strength 2 .

Example

When the g_{i}, h_{i} have degree 1 , then

$$
g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r} \in \mathbb{C}[x, y, u, v]_{2}
$$

Hence the variable f has infinite strength.

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .
$1 / 4$ of the proof
We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.
Think of $R=\mathbb{C}[x, y, u, v]$ as the set of coefficients.
So $\ell_{i} \in R$ and $h_{i} \in R[f, g, p, q]$.
The coefficients of f, g, p, q on the right are all in $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.
The coefficients $x^{2}, y^{2}, u^{2}, v^{2}$ on the left are not all $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .
How to bridge the gap?

Polynomial functors

Definition

The polynomial functor S^{d} : Vec \rightarrow Vec is the functor

$$
\begin{aligned}
V & \mapsto S^{d}(V) \\
(L: V \rightarrow W) & \mapsto\left(S^{d}(L): S^{d}(V) \rightarrow S^{d}(W)\right) \\
\mathbb{C} x_{1} \oplus \cdots \oplus \mathbb{C} x_{n} & \mapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \\
\left(x_{i} \mapsto \sum_{j} c_{i j} y_{j}\right) & \mapsto\left(x_{i} \mapsto \sum_{j} c_{i j} y_{j}\right)
\end{aligned}
$$

Definition

A polynomial transformation

$$
\alpha: S^{d_{1}} \oplus \cdots \oplus S^{d_{k}} \rightarrow S^{e_{1}} \oplus \cdots \oplus S^{e_{\ell}}
$$

is of the form

$$
\left(f_{1}, \ldots, f_{k}\right) \mapsto\left(F_{1}\left(f_{1}, \ldots, f_{k}\right), \ldots, F_{\ell}\left(f_{1}, \ldots, f_{k}\right)\right)
$$

Here $F_{j} \in \mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{e_{j}}$ are fixed forms with $\operatorname{deg}\left(X_{i}\right)=d_{i}$.

Polynomial functors

Example

$$
\left(g_{1}, h_{1}, g_{2}, h_{2}, g_{3}, h_{3}\right) \mapsto g_{1} \cdot h_{1}+g_{2} \cdot h_{2}+g_{3} \cdot h_{3}
$$

defines a polynomial transformation

$$
\alpha:\left(S^{d_{1}} \oplus S^{4-d_{1}}\right) \oplus\left(S^{d_{2}} \oplus S^{4-d_{2}}\right) \oplus\left(S^{d_{3}} \oplus S^{4-d_{3}}\right) \rightarrow S^{4}
$$

for all fixed $1 \leq d_{1} \leq d_{2} \leq d_{3} \leq 2$.

Definition

We define the inverse limit

$$
S_{\infty}^{d}:=\left\{\text { degree- } d \text { series in } x_{1}, x_{2}, \ldots\right\} \ni x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+\ldots
$$

Proposition (B-Draisma-Eggermont-Snowden)

Let $p \in S_{\infty}^{d}$ be a series with projections $p_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ and $\alpha: P \rightarrow S^{d}$ a polynomial transformation. Then

$$
p \in \operatorname{im}\left(\alpha_{\infty}\right) \Leftrightarrow p_{n} \in \operatorname{im}\left(\alpha_{n}\right) \text { for all } n
$$

Take $p=x^{2} f+y^{2} g+u^{2} p+v^{2} q$ for series some $f, g, p, q \in S_{\infty}^{2}$.

Polynomial functors

Definition

Write $D^{d} \subseteq S_{\infty}^{d}$ for the subspace of finite strength series.
A system of variables consists of a basis of S_{∞}^{d} / D^{d} for every $d \geq 1$.

Proposition (B-Draisma-Eggermont-Snowden)

Let $\beta: S^{e_{1}} \oplus \cdots \oplus S^{e_{k}} \rightarrow S^{d}$ and $\alpha: P \rightarrow S^{d}$ be polynomial transformations. Let $f_{1} \in S_{\infty}^{e_{1}}, \ldots, f_{k} \in S_{\infty}^{e_{k}}, p \in P_{\infty}$ be a series.
Assume that $\beta_{\infty}\left(f_{1}, \ldots, f_{k}\right)=\alpha_{\infty}(p)$ and that $\left(f_{1}, \ldots, f_{k}\right)$ is part of a system of variables. Then there exists a polynomial transformation $\gamma: S^{e_{1}} \oplus \cdots \oplus S^{e_{k}} \rightarrow P$ such that $\beta=\alpha \circ \gamma$.

Example (which closes the gap)

Take

$$
\begin{aligned}
\beta(x, y, u, v, f, g, p, q) & =x^{2} f+y^{2} g+u^{2} p+v^{2} q \\
\alpha\left(g_{1}, h_{1}, g_{2}, h_{2}, g_{3}, h_{3}\right) & =g_{1} \cdot h_{1}+g_{2} \cdot h_{2}+g_{3} \cdot h_{3}
\end{aligned}
$$

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

Polynomial functors

Theorem (Ballico-B-Oneto-Ventura)
For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .

Generic and maximal strength

Q: What is the maximal strength of a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?
Q: What is the strength of a random polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?

Definition

The slice rank of f is the minimal $\operatorname{slrk}(f):=r \geq 0$ such that

$$
f=\ell_{1} \cdot h_{1}+\ldots+\ell_{r} \cdot h_{r}
$$

with $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} homogeneous of degrees 1 and $d-1$.
Proposition
(1) $\operatorname{str}(f) \leq \operatorname{slrk}(f) \leq n-1$
(2) $\operatorname{slrk}(f)=\min \left\{\operatorname{codim}(U)\left|U \subseteq \mathbb{C}^{n}, f\right|_{U}=0\right\}$
(3) The subset of polynomials of slice rank $\leq k$ closed.

Generic and maximal strength

Theorem (Harris)

A generic homogeneous polynomial of degree d in $n+1$ variables has slice rank

$$
\min \left\{r \in \mathbb{Z}_{\geq(n+1) / 2} \left\lvert\, r(n+1-r) \geq\binom{ d+n-r}{d}\right.\right\} .
$$

Theorem (B-Oneto)

The strength and slice rank of a homogeneous polynomial of degree d are generically equal for $d \leq 7$ and $d=9$.

Theorem (Ballico-B-Oneto-Ventura)

The strength and slice rank of a homogeneous polynomial of degree d are generically equal for $d \geq 5$.

Generic and maximal strength

We consider

$$
\left\{g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r} \mid \operatorname{deg}\left(g_{i}\right)=a_{i}, \operatorname{deg}\left(h_{i}\right)=d-a_{i}\right\}
$$

inside $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$.
Goal
Prove for fixed r that dimension is maximal when $a_{1}, \ldots, a_{r}=1$.

Terracini's Lemma

The dimension is $\operatorname{dim}\left(g_{1}, h_{1}, \ldots, g_{r}, h_{r}\right)_{d}$ for generic generators.

Proposition

The dimension is at most

$$
\binom{n+d}{d}-\operatorname{coeff}_{d}\left(\frac{\prod_{i=1}^{r}\left(1-t^{a_{i}}\right)\left(1-t^{d-a_{i}}\right)}{(1-t)^{n+1}}\right)+\binom{\ell_{d / 2}}{2}
$$

where $\ell_{d / 2}:=\#\left\{i \mid a_{i}=d / 2\right\}$. Equality when $a_{1}, \ldots, a_{r}=1$.

Generic and maximal strength

For fixed d, r, we want $F\left(a_{1}, \ldots, a_{r}\right):=$

$$
\operatorname{coeff}_{d}\left(\frac{\prod_{i=1}^{r}\left(1-t^{a_{i}}\right)\left(1-t^{d-a_{i}}\right)}{(1-t)^{n+1}}\right)-\binom{\ell_{d / 2}}{2}
$$

to be minimal when $a_{1}, \ldots, a_{r}=1$.
Proposition
We have

$$
F\left(a_{1}, \ldots, a_{r}\right)-F\left(a_{1}, \ldots, a_{r-1}, a_{r}-1\right)>0
$$

when $a_{r}=\theta:=\max \left\{a_{1}, \ldots, a_{r}\right\}>2$.
Proof
Write $c_{\ell}\left(k_{1}, \ldots, k_{n}\right):=\operatorname{coeff}_{\ell}\left(P_{k_{1}} \cdots P_{k_{n}}\right) \geq 0$ where

$$
P_{k}=1+t+\ldots+t^{k}
$$

for $k \in\{0,1,2, \ldots\} \cup\{\infty\}$. Then the difference equals

$$
c_{d-\theta+1}\left(\infty^{n-r}, d-2 \theta, a_{1}-1, \ldots, a_{r-1}-1\right)-\ell_{\theta-1}-\left(\ell_{\theta}-1\right) m
$$

where $\ell_{j}=\#\left\{i \mid a_{i}=j\right\}$ and $m=n-\ell_{1}$.

Generic and maximal strength

Write $c_{\ell}\left(k_{1}, \ldots, k_{n}\right):=\operatorname{coeff}_{\ell}\left(P_{k_{1}} \cdots P_{k_{n}}\right) \geq 0$ where

$$
P_{k}=1+t+\ldots+t^{k}
$$

for $k \in\{0,1,2, \ldots\} \cup\{\infty\}$.

Proposition

We have

- $c_{\ell}\left(k_{1}, \ldots, k_{n}\right)=c_{\ell}\left(k_{\sigma(1)}, \ldots, k_{\sigma(n)}\right)$ for all $\sigma \in S_{n}$
- $c_{\ell}\left(k_{1}, \ldots, k_{n}, 0\right)=c_{\ell}\left(k_{1}, \ldots, k_{n}\right)$
- $c_{\ell}\left(k, k_{2}, \ldots, k_{n}\right) \geq c_{\ell}\left(k^{\prime}, k_{2}, \ldots, k_{n}\right)$ for all $0 \leq k^{\prime} \leq k \leq \infty$
- $c_{\ell+1}\left(k_{1}, \ldots, k_{n}\right) \geq c_{\ell}\left(k_{1}, \ldots, k_{n}\right)$ when $k_{1}=\infty$

We get

$$
\begin{gathered}
c_{d-\theta+1}\left(\infty^{n-r}, d-2 \theta, a_{1}-1, \ldots, a_{r-1}-1\right) \\
\geq \operatorname{coeff}_{4}\left(P_{\infty}^{\ell_{\theta}} P_{1}^{m-\ell_{\theta}-1}\right)-\left(\ell_{\theta}-1\right)(m-1)
\end{gathered}
$$

where $\ell_{j}=\#\left\{i \mid a_{i}=j\right\}$ and $m=n-\ell_{1}$.

Strength of polynomials

Q: How do you compute the strength of a polynomial?
Q: Is there an algorithm that computes best low-strength approximations of a polynomial?

Q: What is the highest possible strength of a limit of strength $\leq k$ polynomials?

Thanks for your attention!

References

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura The set of forms with bounded strength is not closed preprint

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura Strength and slice rank of forms are generically equal Israel J. Math. (2021), to appear

䍰 Arthur Bik, Alessandro Danelon, Jan Draisma, Rob H. Eggermont Universality of high-strength tensors Vietnam J. Math. (2021), to appear

Arthur Bik, Jan Draisma, Rob H. Eggermont
Polynomials and tensors of bounded strength
Commun. Contemp. Math. 21 (2019), no. 7, 1850062

References

Arthur Bik, Jan Draisma, Rob H. Eggermont, Andrew Snowden
The geometry of polynomial representations
preprint
Arthur Bik, Alessandro Oneto
On the strength of general polynomials
Linear Multilinear Algebra (2021), to appear
(in Daniel Erman, Steven V. Sam, Andrew Snowden
Big polynomial rings and Stillman's conjecture
Invent. math. 218 (2019), pp. 413-439
David Kazhdan, Tamar Ziegler
Properties of high rank subvarieties of affine spaces
Geometric and Functional Analysis 30 (2020), pp. 1063-1096

