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The strength of polynomials

Let f be a homogeneous polynomial of degree d ≥ 2 over C.

Definition
The strength of f is the minimal number str(f) := r ≥ 0 such that

f = g1 · h1 + . . .+ gr · hr
with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.

Question
What is the strength of f := x2 + y2 + z2?
• We have str(f) ≤ 3 since f = x · x+ y · y + z · z.
• We have str(f) > 0 since f 6= 0.
• We have str(f) > 1 since f is not reducible.
• We have str(f) ≤ 2 since f = (x+ iy) · (x− iy) + z · z.

So str(f) = 2 (but over R is would be 3).
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Why care about strength?

Reason 1 - Data efficiency
A homogeneous polynomial of degree d in n+ 1 variables has(

n+ d

d

)
coefficients.

A polynomial of degree 3 in 106 variables has
≈ 1017

coefficients.

The number of coefficients in a strength decomposition is:
≈ str(f) · 1012

So the strength decomposition uses ≈ 105/ str(f) times less space.
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Why care about strength?

Reason 2 - Universality
Let f ∈ C[x1, . . . , xn]d. For ?, . . . , ? ∈ C, the polynomial

f(?y1 + . . .+ ?ym, . . . , ?y1 + . . .+ ?ym) ∈ C[y1, . . . , ym]d
is a coordinate transformation of f .

Let P be a property of degree-d polynomials such that
f has P ⇔ every coordinate transformation of f has P

Examples
Ptriv : the polynomial equals itself
Pk : the polynomial has strength ≤ k
PKZ,` : every partial derivative of the polynomial has strength ≤ `

Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)
Either P = Ptriv or there exists a k ≥ 0 such that

f has P ⇒ str(f) ≤ k
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Why care about strength?

Reason 3 - It is like the rank of matrices
We have a one-to-one correspondence
{A ∈ Cn×n | A = A>} ↔ C[x1, . . . , xn]2

A 7→ (x1, . . . , xn)A(x1, . . . , xn)>

(a1, . . . , an)>(a1, . . . , an) 7→ (a1x1 + . . .+ anxn)2

vw> + wv> 7→ 2 · (x1, . . . , xn)v · (x1, . . . , xn)w
Write f = (x1, . . . , xn)A(x1, . . . , xn)>. Then

str(f) ≤ k ⇔ f is a sum of k reducible polynomials
⇔ A is a sum of k matrices of rank ≤ 2
⇔ A has rank ≤ 2k

So str(f) = drk(A)/2e.
Example
str(x2 + y2 + z2) = drk(I3)/2e = 2.
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Basic properties of strength

How does strength compare to rank of matrices?
We can compute the rank of a matrix.
(determinants of submatrices / column- and rowoperations)
Q: How do you compute the strength of a polynomial?

The limit of a sequence of matrices of rank ≤ k has rank ≤ k.
Q: Is the subset of polynomials of strength ≤ k closed?

An n×m matrix has maximal rank min(n,m).
Q: What is the maximal strength of a polynomial in C[x1, . . . , xn]d?

A random n×m matrix has rank min(n,m).
Q: What is the strength of a random polynomial in C[x1, . . . , xn]d?
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Computing the strength of a polynomial

I don’t know how to do this... Exercise Find an algorithm.

Tricks
1 We have str(f + g) ≤ str(f) + str(g).
2 For f ∈ C[x1, . . . , xn]d, we define the singular locus:

Sing(f) :=
{
∂f

∂x1
= . . . = ∂f

∂xn
= 0

}
When f = g1 · h1 + . . .+ gk · hk, then

{g1 = h1 = . . . = gk = hk = 0} ⊆ Sing(f)

and so dim Sing(f) ≥ n− 2 str(f).
3 Every polynomial in C[x, y]d is reducible. Hence

f ∈ C[x, y]d ⇒ str(f) ≤ 1
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Computing the strength of a polynomial

Example
Consider f = xd1 + . . .+ xdn.

We have

f =
{

(xd1 + xd2) + . . .+ (xd2k−1 + xd2k) if n = 2k
(xd1 + xd2) + . . .+ (xd2k−1 + xd2k) + xd2k+1 if n = 2k + 1

and so str(f) ≤ dn/2e.

The singular locus
Sing(f) = {dxd−1

1 = . . . = dxd−1
n = 0} = {(0, . . . , 0)} ⊆ Cn

has dimenion 0 ≥ n− 2 str(f). So str(f) ≥ dn/2e.

So str(f) = dn/2e.
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Strength ≤ 3 is not closed

Qd,k,n: Is {f ∈ C[x1, . . . , xn]d | str(f) ≤ k} closed?

For k = 1, yes. (union of images of projective morphisms).
For k = 2, I don’t know. (Conjecture: yes)
For d = 2, yes. (rank of symmetric matrices)
For d = 3, yes. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)
The set {f ∈ C[x1, . . . , xn]4 | str(f) ≤ 3} is not closed for n� 0.

Consider
1/
t(x

2+tg)(y2+tf)−1/
t(u

2−tq)(v2−tp)−1/
t(xy−uv)(xy+uv)

=
x2f + y2g + u2p+ v2q + t(fg − pq)

It has strength ≤ 3. For t→ 0, we get x2f + y2g + u2p+ v2q.
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Strength ≤ 3 is not closed

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.

Consider the polynomial

h := x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4

where x, y, u, v have degree 1 and f, g, p, q︸ ︷︷ ︸
variables

have degree 2.

Proposition
The polynomial h has strength 4.
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Strength ≤ 3 is not closed

Definition
The strength of a polynomial h ∈ C[x, y, u, v, f, g, p, q]d is the
minimum number r ≥ 0 (when this exists) such that

h = g1 · h1 + . . .+ gr · hr
with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.
Example
The polynomial

f · g + x · (uh+ v3)

is irreducible and hence has strength 2.

Example
When the gi, hi have degree 1, then

g1 · h1 + . . .+ gr · hr ∈ C[x, y, u, v]2
Hence the variable f has infinite strength.
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Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.
1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p+ v2q 6= `1 · h1 + `2 · h2 + `3 · h3

for all `i ∈ C[x, y, u, v, f, g, p, q]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.

Strength of Polynomials Arthur Bik



Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.
1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p+ v2q 6= `1 · h1 + `2 · h2 + `3 · h3

for all `i ∈ C[x, y, u, v]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.

Think of R = C[x, y, u, v] as the set of coefficients.
So `i ∈ R and hi ∈ R[f, g, p, q].

The coefficients of f, g, p, q on the right are all in (`1, `2, `3).
The coefficients x2, y2, u2, v2 on the left are not all (`1, `2, `3).
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Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.

...

...

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.

How to bridge the gap?
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Polynomial functors

Definition
The polynomial functor Sd : Vec→ Vec is the functor

V 7→ Sd(V )
(L : V →W ) 7→

(
Sd(L) : Sd(V )→ Sd(W )

)
Cx1 ⊕ · · · ⊕ Cxn 7→ C[x1, . . . , xn]d

(xi 7→
∑
jcijyj) 7→ (xi 7→

∑
jcijyj)

Definition
A polynomial transformation

α : Sd1 ⊕ · · · ⊕ Sdk → Se1 ⊕ · · · ⊕ Se`
is of the form

(f1, . . . , fk) 7→ (F1(f1, . . . , fk), . . . , F`(f1, . . . , fk))
Here Fj ∈ C[X1, . . . , Xk]ej are fixed forms with deg(Xi) = di.
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Polynomial functors

Example
(g1, h1, g2, h2, g3, h3) 7→ g1 · h1 + g2 · h2 + g3 · h3

defines a polynomial transformation
α : (Sd1 ⊕ S4−d1)⊕ (Sd2 ⊕ S4−d2)⊕ (Sd3 ⊕ S4−d3)→ S4

for all fixed 1 ≤ d1 ≤ d2 ≤ d3 ≤ 2.
Definition
We define the inverse limit

Sd∞ := {degree-d series in x1, x2, . . .} 3 xd1 + xd2 + xd3 + . . .

Proposition (B-Draisma-Eggermont-Snowden)
Let p ∈ Sd∞ be a series with projections pn ∈ C[x1, . . . , xn]d and
α : P → Sd a polynomial transformation. Then

p ∈ im(α∞)⇔ pn ∈ im(αn) for all n

Take p = x2f + y2g + u2p+ v2q for series some f, g, p, q ∈ S2
∞.
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Polynomial functors

Definition
Write Dd ⊆ Sd∞ for the subspace of finite strength series.
A system of variables consists of a basis of Sd∞/Dd for every d ≥ 1.

Proposition (B-Draisma-Eggermont-Snowden)
Let β : Se1 ⊕ · · · ⊕ Sek → Sd and α : P → Sd be polynomial
transformations. Let f1 ∈ Se1

∞, . . . , fk ∈ Sek∞ , p ∈ P∞ be a series.
Assume that β∞(f1, . . . , fk) = α∞(p) and that (f1, . . . , fk) is part
of a system of variables. Then there exists a polynomial
transformation γ : Se1 ⊕ · · · ⊕ Sek → P such that β = α ◦ γ.

Example (which closes the gap)
Take

β(x, y, u, v, f, g, p, q) = x2f + y2g + u2p+ v2q

α(g1, h1, g2, h2, g3, h3) = g1 · h1 + g2 · h2 + g3 · h3
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Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.wwww� Polynomial functors

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.
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Generic and maximal strength

Q: What is the maximal strength of a polynomial in C[x1, . . . , xn]d?

Q: What is the strength of a random polynomial in C[x1, . . . , xn]d?

Definition
The slice rank of f is the minimal slrk(f) := r ≥ 0 such that

f = `1 · h1 + . . .+ `r · hr
with `1, . . . , `r and h1, . . . , hr homogeneous of degrees 1 and d− 1.

Proposition
1 str(f) ≤ slrk(f) ≤ n− 1
2 slrk(f) = min{codim(U) | U ⊆ Cn, f |U = 0}
3 The subset of polynomials of slice rank ≤ k closed.
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Generic and maximal strength

Theorem (Harris)
A generic homogeneous polynomial of degree d in n+ 1 variables
has slice rank

min
{
r ∈ Z≥(n+1)/2

∣∣∣∣∣ r(n+ 1− r) ≥
(
d+ n− r

d

)}
.

Theorem (B-Oneto)
The strength and slice rank of a homogeneous polynomial of
degree d are generically equal for d ≤ 7 and d = 9.

Theorem (Ballico-B-Oneto-Ventura)
The strength and slice rank of a homogeneous polynomial of
degree d are generically equal for d ≥ 5.
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Generic and maximal strength

We consider
{g1 · h1 + . . .+ gr · hr | deg(gi) = ai, deg(hi) = d− ai}

inside C[x1, . . . , xn]d.
Goal
Prove for fixed r that dimension is maximal when a1, . . . , ar = 1.

Terracini’s Lemma
The dimension is dim(g1, h1, . . . , gr, hr)d for generic generators.

Proposition
The dimension is at most(

n+ d

d

)
− coeffd

(∏r
i=1(1− tai)(1− td−ai)

(1− t)n+1

)
+
(
`d/2

2

)

where `d/2 := #{i | ai = d/2}. Equality when a1, . . . , ar = 1.
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Generic and maximal strength

For fixed d, r, we want F (a1, . . . , ar) :=

coeffd

(∏r
i=1(1− tai)(1− td−ai)

(1− t)n+1

)
−
(
`d/2

2

)
to be minimal when a1, . . . , ar = 1.
Proposition
We have

F (a1, . . . , ar)− F (a1, . . . , ar−1, ar − 1) > 0
when ar = θ := max{a1, . . . , ar} > 2.
Proof
Write c`(k1, . . . , kn) := coeff`(Pk1 · · ·Pkn) ≥ 0 where

Pk = 1 + t+ . . .+ tk

for k ∈ {0, 1, 2, . . .} ∪ {∞}. Then the difference equals
cd−θ+1(∞n−r, d− 2θ, a1 − 1, . . . , ar−1 − 1)− `θ−1 − (`θ − 1)m

where `j = #{i | ai = j} and m = n− `1.
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Generic and maximal strength

Write c`(k1, . . . , kn) := coeff`(Pk1 · · ·Pkn) ≥ 0 where
Pk = 1 + t+ . . .+ tk

for k ∈ {0, 1, 2, . . .} ∪ {∞}.

Proposition
We have
• c`(k1, . . . , kn) = c`(kσ(1), . . . , kσ(n)) for all σ ∈ Sn
• c`(k1, . . . , kn, 0) = c`(k1, . . . , kn)
• c`(k, k2, . . . , kn) ≥ c`(k′, k2, . . . , kn) for all 0 ≤ k′ ≤ k ≤ ∞
• c`+1(k1, . . . , kn) ≥ c`(k1, . . . , kn) when k1 =∞

We get
cd−θ+1(∞n−r, d− 2θ, a1 − 1, . . . , ar−1 − 1)

≥ coeff4(P `θ∞P
m−`θ−1
1 )− (`θ − 1)(m− 1)

where `j = #{i | ai = j} and m = n− `1.
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Strength of polynomials

Q: How do you compute the strength of a polynomial?

Q: Is there an algorithm that computes best low-strength
approximations of a polynomial?

Q: What is the highest possible strength of a limit of strength ≤ k
polynomials?

Thanks for your attention!
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