Strength of polynomials via polynomial functors

Arthur Bik

Max-Planck-Institut für Mathematik in den Naturwissenschaften

SIAM AG21

August 20, 2021

MAX-PLANCK-GESELLSCHAFT

Let f be a homogeneous polynomial of degree $d \ge 2$ over \mathbb{C} .

Definition

The strength of f is the minimal number $str(f) := r \ge 0$ such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$.

Examples

(0) str(0) = 0(1) $str((x^2 + xy + y^2) \cdot (u^3 + uvw + v^3)) = 1$ (2) The polynomial $x^2 + y^2 + z^2 = x \cdot x + y \cdot y + z \cdot z$ $= (x + iy) \cdot (x - iy) + z \cdot z$ has strength 2. (It would be 3 over \mathbb{R}) (3) $str(x_1 \cdot g_1 + x_2 \cdot g_2 + ... + x_n \cdot g_n) \le n$

A coordinate transformation of $f \in \mathbb{C}[x_1,\ldots,x_n]_d$ is

 $f(c_{11}y_1 + \ldots + c_{1m}y_m, \ldots, c_{n1}y_1 + \ldots + c_{nm}y_m) \in \mathbb{C}[y_1, \ldots, y_m]_d$

Let \mathcal{P} be a property of degree-d polynomials such that

 $f \text{ has } \mathcal{P} \Leftrightarrow \text{every coordinate transformation of } f \text{ has } \mathcal{P}$ **Example**

 $\mathcal{P} =$ "has strength $\leq k$ " for fixed $k \geq 0$.

Example (Kazhdan-Ziegler)

 $\mathcal{P} =$ "all partial derivatives have strength $\leq k$ " for fixed $k \geq 0$.

Theorem (Kazhdan-Ziegler, B-Draisma-Eggermont)

One of the following holds:

- (1) Every polynomial has \mathcal{P} .
- (2) There exists an $\ell \ge 0$ such that f has $\mathcal{P} \Rightarrow \operatorname{str}(f) \le \ell$.

 $\mathbf{Q}_{d,k,n}$: Is $\{f \in \mathbb{C}[x_1, \dots, x_n]_d \mid \operatorname{str}(f) \leq k\}$ closed?

For
$$k = 1$$
, yes. (Union of images of projective morphisms).

For
$$k = 2$$
, I don't know. (Conjecture: yes)

For d = 2, yes. (rank of symmetric matrices)

For d = 3, yes. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)

The $\{f \in \mathbb{C}[x_1, \dots, x_n]_4 \mid \operatorname{str}(f) \leq 3\}$ is not closed for $n \gg 0$.

Consider

$$\begin{array}{l} 1/_t (x^2 + tg)(y^2 + tf) - 1/_t (u^2 - tq)(v^2 - tp) - 1/_t (xy - uv)(xy + uv) \\ = \\ x^2f + y^2g + u^2p + v^2q + t(fg - pq) \\ \\ \mbox{It has strength} \leq 3. \ \mbox{For } t \to 0, \ \mbox{we get } x^2f + y^2g + u^2p + v^2q. \end{array}$$

Theorem (Ballico-B-Oneto-Ventura)

For $n\gg 0,$ there are polynomials $f,g,p,q\in \mathbb{C}[z_1,\ldots,z_n]_2$ such that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, z_{1}, \dots, z_{n}]_{4}$$

has strength 4.

Consider the polynomial

$$h:=x^2f+y^2g+u^2p+v^2q\in \mathbb{C}[x,y,u,v,f,g,p,q]_4$$

where x, y, u, v have degree 1 and $\underbrace{f, g, p, q}_{\text{variables}}$ have degree 2.

Proposition

The polynomial h has strength 4.

Definition

The strength of a polynomial $h \in \mathbb{C}[x, y, u, v, f, g, p, q]_d$ is the minimum number $r \geq 0$ (when this exists) such that

$$h = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$. Example

The polynomial

$$f \cdot g + x \cdot (uh + v^3)$$

is irreducible and hence has strength 2.

Example

When the g_i, h_i have degree 1, then

$$g_1 \cdot h_1 + \ldots + g_r \cdot h_r \in \mathbb{C}[x, y, u, v]_2$$

Hence the variable f has infinite strength.

The polynomial

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}$$

has strength 4.

1/4 of the proof

We need to show, for example, that

$$\begin{aligned} x^2f + y^2g + u^2p + v^2q \neq \ell_1 \cdot h_1 + \ell_2 \cdot h_2 + \ell_3 \cdot h_3 \\ \text{for all } \ell_i \in \mathbb{C}[x, y, u, v, f, g, p, q]_1 \text{ and } h_i \in \mathbb{C}[x, y, u, v, f, g, p, q]_3. \end{aligned}$$

The polynomial

 $x^2f+y^2g+u^2p+v^2q\in \mathbb{C}[x,y,u,v,f,g,p,q]_4$

has strength 4.

1/4 of the proof

We need to show, for example, that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \neq \ell_{1} \cdot h_{1} + \ell_{2} \cdot h_{2} + \ell_{3} \cdot h_{3}$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.

Think of $R = \mathbb{C}[x, y, u, v]$ as the set of coefficients. So $\ell_i \in R$ and $h_i \in R[f, g, p, q]$.

The coefficients of f, g, p, q on the right are all in (ℓ_1, ℓ_2, ℓ_3) . The coefficients x^2, y^2, u^2, v^2 on the left are not all (ℓ_1, ℓ_2, ℓ_3) .

The polynomial

$$x^2f + y^2g + u^2p + v^2q \in \mathbb{C}[x, y, u, v, f, g, p, q]_4$$

has strength 4.

:

Theorem (Ballico-B-Oneto-Ventura)

For $n\gg 0,$ there are polynomials $f,g,p,q\in \mathbb{C}[z_1,\ldots,z_n]_2$ such that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, z_{1}, \dots, z_{n}]_{4}$$

has strength 4.

How to bridge the gap?

Definition

The polynomial functor $S^d \colon \operatorname{Vec} \to \operatorname{Vec}$ is the functor

$$V \mapsto S^{d}(V)$$

$$(L: V \to W) \mapsto \left(S^{d}(L): S^{d}(V) \to S^{d}(W)\right)$$

$$\mathbb{C} x_{1} \oplus \cdots \oplus \mathbb{C} x_{n} \mapsto \mathbb{C} [x_{1}, \dots, x_{n}]_{d}$$

$$(x_{i} \mapsto \sum_{j} c_{ij} y_{j}) \mapsto (x_{i} \mapsto \sum_{j} c_{ij} y_{j})$$

Definition

A polynomial transformation

$$\alpha \colon S^{d_1} \oplus \cdots \oplus S^{d_k} \to S^{e_1} \oplus \cdots \oplus S^{e_k}$$

is of the form

$$(f_1,\ldots,f_k)\mapsto (F_1(f_1,\ldots,f_k),\ldots,F_\ell(f_1,\ldots,f_k))$$

Here $F_j \in \mathbb{C}[X_1, \ldots, X_k]_{e_j}$ are fixed forms with $\deg(X_i) = d_i$.

Example

 $(g_1,h_1,g_2,h_2,g_3,h_3)\mapsto g_1\cdot h_1+g_2\cdot h_2+g_3\cdot h_3$ defines a polynomial transformation

 $\alpha \colon (S^{d_1} \oplus S^{4-d_1}) \oplus (S^{d_2} \oplus S^{4-d_2}) \oplus (S^{d_3} \oplus S^{4-d_3}) \to S^4$ for all fixed $1 \le d_1 \le d_2 \le d_3 \le 2$.

Definition

We define the inverse limit

 $S^d_\infty := \{ \mathsf{degree-}d \text{ series in } x_1, x_2, \ldots \} \ni x^d_1 + x^d_2 + x^d_3 + \ldots$

Proposition (B-Draisma-Eggermont-Snowden)

Let $p \in S^d_{\infty}$ be a series with projections $p_n \in \mathbb{C}[x_1, \ldots, x_n]_d$ and $\alpha \colon P \to S^d$ a polynomial transformation. Then

$$p \in \operatorname{im}(\alpha_{\infty}) \Leftrightarrow p_n \in \operatorname{im}(\alpha_n)$$
 for all n

Take $p=x^2f+y^2g+u^2p+v^2q$ for series some $f,g,p,q\in S^2_\infty.$

Definition

Write $D^d \subseteq S^d_{\infty}$ for the subspace of finite strength series. A system of variables consists of a basis of S^d_{∞}/D^d for every $d \ge 1$.

Proposition (B-Draisma-Eggermont-Snowden)

Let $\beta: S^{e_1} \oplus \cdots \oplus S^{e_k} \to S^d$ and $\alpha: P \to S^d$ be polynomial transformations. Let $f_1 \in S_{\infty}^{e_1}, \ldots, f_k \in S_{\infty}^{e_k}, p \in P_{\infty}$ be a series. Assume that $\beta_{\infty}(f_1, \ldots, f_k) = \alpha_{\infty}(p)$ and that (f_1, \ldots, f_k) is part of a system of variables. Then there exists a polynomial transformation $\gamma: S^{e_1} \oplus \cdots \oplus S^{e_k} \to P$ such that $\beta = \alpha \circ \gamma$.

Example (which closes the gap)

Take

$$\beta(x, y, u, v, f, g, p, q) = x^2 f + y^2 g + u^2 p + v^2 q$$

$$\alpha(g_1, h_1, g_2, h_2, g_3, h_3) = g_1 \cdot h_1 + g_2 \cdot h_2 + g_3 \cdot h_3$$

The polynomial

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}$$

has strength 4.

```
Polynomial functors
```

Theorem (Ballico-B-Oneto-Ventura)

For $n\gg 0,$ there are polynomials $f,g,p,q\in \mathbb{C}[z_1,\ldots,z_n]_2$ such that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, z_{1}, \dots, z_{n}]_{4}$$

has strength 4.

Thanks for your attention!

References

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura *The set of forms with bounded strength is not closed* preprint

Arthur Bik

Strength and Noetherianity for infinite Tensors PhD thesis, University of Bern, 2020

- Arthur Bik, Jan Draisma, Rob H. Eggermont, Andrew Snowden *The geometry of polynomial representations.* preprint
- Daniel Erman, Steven V. Sam, Andrew Snowden Big polynomial rings and Stillman's conjecture Inventiones mathematicae 218 (2019), pp. 413–439