Strength of polynomials via polynomial functors

Arthur Bik

Max-Planck-Institut für Mathematik in den Naturwissenschaften

SIAM AG21

August 20, 2021

The strength of polynomials

Let f be a homogeneous polynomial of degree $d \geq 2$ over \mathbb{C}.

Definition

The strength of f is the minimal number $\operatorname{str}(f):=r \geq 0$ such that

$$
f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

with $g_{1}, h_{1}, \ldots, g_{r}, h_{r}$ homogeneous polynomials of degree $\leq d-1$.

Examples

(0) $\operatorname{str}(0)=0$
(1) $\operatorname{str}\left(\left(x^{2}+x y+y^{2}\right) \cdot\left(u^{3}+u v w+v^{3}\right)\right)=1$
(2) The polynomial

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =x \cdot x+y \cdot y+z \cdot z \\
& =(x+i y) \cdot(x-i y)+z \cdot z
\end{aligned}
$$

has strength 2 .
(It would be 3 over \mathbb{R})
(3) $\operatorname{str}\left(x_{1} \cdot g_{1}+x_{2} \cdot g_{2}+\ldots+x_{n} \cdot g_{n}\right) \leq n$

Why care about strength?

A coordinate transformation of $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ is
$f\left(c_{11} y_{1}+\ldots+c_{1 m} y_{m}, \ldots, c_{n 1} y_{1}+\ldots+c_{n m} y_{m}\right) \in \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]_{d}$
Let \mathcal{P} be a property of degree- d polynomials such that
f has $\mathcal{P} \Leftrightarrow$ everv coordinate transformation of f has \mathcal{P}
Example
$\mathcal{P}=$ "has strength $\leq k$ " for fixed $k \geq 0$.
Example (Kazhdan-Ziegler)
$\mathcal{P}=$ "all partial derivatives have strength $\leq k$ " for fixed $k \geq 0$.
Theorem (Kazhdan-Ziegler, B-Draisma-Eggermont)
One of the following holds:
(1) Every polynomial has \mathcal{P}.
(2) There exists an $\ell \geq 0$ such that f has $\mathcal{P} \Rightarrow \operatorname{str}(f) \leq \ell$.

Properties of strength

$\mathbf{Q}_{d, k, n}$: Is $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \operatorname{str}(f) \leq k\right\}$ closed?
For $k=1$, yes. (Union of images of projective morphisms).
For $k=2$, I don't know. (Conjecture: yes)
For $d=2$, yes. (rank of symmetric matrices)
For $d=3$, yes. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)

The $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{4} \mid \operatorname{str}(f) \leq 3\right\}$ is not closed for $n \gg 0$.
Consider

$$
\begin{gathered}
{ }^{1} / t\left(x^{2}+t g\right)\left(y^{2}+t f\right)-1 / t\left(u^{2}-t q\right)\left(v^{2}-t p\right)-1 / t(x y-u v)(x y+u v) \\
= \\
x^{2} f+y^{2} g+u^{2} p+v^{2} q+t(f g-p q)
\end{gathered}
$$

It has strength ≤ 3. For $t \rightarrow 0$, we get $x^{2} f+y^{2} g+u^{2} p+v^{2} q$.

Strength ≤ 3 is not closed

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .
Consider the polynomial

$$
h:=x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

where x, y, u, v have degree 1 and $\underbrace{f, g, p, q}_{\text {variables }}$ have degree 2 .

Proposition

The polynomial h has strength 4 .

Strength ≤ 3 is not closed

Definition

The strength of a polynomial $h \in \mathbb{C}[x, y, u, v, f, g, p, q]_{d}$ is the minimum number $r \geq 0$ (when this exists) such that

$$
h=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

with $g_{1}, h_{1}, \ldots, g_{r}, h_{r}$ homogeneous polynomials of degree $\leq d-1$.

Example

The polynomial

$$
f \cdot g+x \cdot\left(u h+v^{3}\right)
$$

is irreducible and hence has strength 2 .

Example

When the g_{i}, h_{i} have degree 1 , then

$$
g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r} \in \mathbb{C}[x, y, u, v]_{2}
$$

Hence the variable f has infinite strength.

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.
Think of $R=\mathbb{C}[x, y, u, v]$ as the set of coefficients.
So $\ell_{i} \in R$ and $h_{i} \in R[f, g, p, q]$.
The coefficients of f, g, p, q on the right are all in $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.
The coefficients $x^{2}, y^{2}, u^{2}, v^{2}$ on the left are not all $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .
How to bridge the gap?

Polynomial functors

Definition

The polynomial functor S^{d} : Vec \rightarrow Vec is the functor

$$
\begin{aligned}
V & \mapsto S^{d}(V) \\
(L: V \rightarrow W) & \mapsto\left(S^{d}(L): S^{d}(V) \rightarrow S^{d}(W)\right) \\
\mathbb{C} x_{1} \oplus \cdots \oplus \mathbb{C} x_{n} & \mapsto \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \\
\left(x_{i} \mapsto \sum_{j} c_{i j} y_{j}\right) & \mapsto\left(x_{i} \mapsto \sum_{j} c_{i j} y_{j}\right)
\end{aligned}
$$

Definition

A polynomial transformation

$$
\alpha: S^{d_{1}} \oplus \cdots \oplus S^{d_{k}} \rightarrow S^{e_{1}} \oplus \cdots \oplus S^{e_{\ell}}
$$

is of the form

$$
\left(f_{1}, \ldots, f_{k}\right) \mapsto\left(F_{1}\left(f_{1}, \ldots, f_{k}\right), \ldots, F_{\ell}\left(f_{1}, \ldots, f_{k}\right)\right)
$$

Here $F_{j} \in \mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{e_{j}}$ are fixed forms with $\operatorname{deg}\left(X_{i}\right)=d_{i}$.

Polynomial functors

Example

$$
\left(g_{1}, h_{1}, g_{2}, h_{2}, g_{3}, h_{3}\right) \mapsto g_{1} \cdot h_{1}+g_{2} \cdot h_{2}+g_{3} \cdot h_{3}
$$

defines a polynomial transformation

$$
\alpha:\left(S^{d_{1}} \oplus S^{4-d_{1}}\right) \oplus\left(S^{d_{2}} \oplus S^{4-d_{2}}\right) \oplus\left(S^{d_{3}} \oplus S^{4-d_{3}}\right) \rightarrow S^{4}
$$

for all fixed $1 \leq d_{1} \leq d_{2} \leq d_{3} \leq 2$.

Definition

We define the inverse limit

$$
S_{\infty}^{d}:=\left\{\text { degree- } d \text { series in } x_{1}, x_{2}, \ldots\right\} \ni x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+\ldots
$$

Proposition (B-Draisma-Eggermont-Snowden)

Let $p \in S_{\infty}^{d}$ be a series with projections $p_{n} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ and $\alpha: P \rightarrow S^{d}$ a polynomial transformation. Then

$$
p \in \operatorname{im}\left(\alpha_{\infty}\right) \Leftrightarrow p_{n} \in \operatorname{im}\left(\alpha_{n}\right) \text { for all } n
$$

Take $p=x^{2} f+y^{2} g+u^{2} p+v^{2} q$ for series some $f, g, p, q \in S_{\infty}^{2}$.

Polynomial functors

Definition

Write $D^{d} \subseteq S_{\infty}^{d}$ for the subspace of finite strength series.
A system of variables consists of a basis of S_{∞}^{d} / D^{d} for every $d \geq 1$.

Proposition (B-Draisma-Eggermont-Snowden)

Let $\beta: S^{e_{1}} \oplus \cdots \oplus S^{e_{k}} \rightarrow S^{d}$ and $\alpha: P \rightarrow S^{d}$ be polynomial transformations. Let $f_{1} \in S_{\infty}^{e_{1}}, \ldots, f_{k} \in S_{\infty}^{e_{k}}, p \in P_{\infty}$ be a series.
Assume that $\beta_{\infty}\left(f_{1}, \ldots, f_{k}\right)=\alpha_{\infty}(p)$ and that $\left(f_{1}, \ldots, f_{k}\right)$ is part of a system of variables. Then there exists a polynomial transformation $\gamma: S^{e_{1}} \oplus \cdots \oplus S^{e_{k}} \rightarrow P$ such that $\beta=\alpha \circ \gamma$.

Example (which closes the gap)

Take

$$
\begin{aligned}
\beta(x, y, u, v, f, g, p, q) & =x^{2} f+y^{2} g+u^{2} p+v^{2} q \\
\alpha\left(g_{1}, h_{1}, g_{2}, h_{2}, g_{3}, h_{3}\right) & =g_{1} \cdot h_{1}+g_{2} \cdot h_{2}+g_{3} \cdot h_{3}
\end{aligned}
$$

Strength ≤ 3 is not closed

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

Polynomial functors

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .
Thanks for your attention!

References

Edoardo Ballico，Arthur Bik，Alessandro Oneto，Emanuele Ventura The set of forms with bounded strength is not closed preprint

嗇 Arthur Bik
Strength and Noetherianity for infinite Tensors
PhD thesis，University of Bern， 2020
目 Arthur Bik，Jan Draisma，Rob H．Eggermont，Andrew Snowden
The geometry of polynomial representations．
preprint
囯 Daniel Erman，Steven V．Sam，Andrew Snowden
Big polynomial rings and Stillman＇s conjecture
Inventiones mathematicae 218 （2019），pp．413－439

