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The strength of polynomials

Let f be a homogeneous polynomial of degree d ≥ 2 over C.

Definition
The strength of f is the minimal number str(f) := r ≥ 0 such that

f = g1 · h1 + . . .+ gr · hr

with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.

Examples
(0) str(0) = 0
(1) str((x2 + xy + y2) · (u3 + uvw + v3)) = 1
(2) The polynomial

x2 + y2 + z2 = x · x+ y · y + z · z
= (x+ iy) · (x− iy) + z · z

has strength 2. (It would be 3 over R)
(3) str(x1 · g1 + x2 · g2 + . . .+ xn · gn) ≤ n
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Why care about strength?

A coordinate transformation of f ∈ C[x1, . . . , xn]d is

f(c11y1 + . . .+ c1mym, . . . , cn1y1 + . . .+ cnmym) ∈ C[y1, . . . , ym]d
Let P be a property of degree-d polynomials such that

f has P ⇔ every coordinate transformation of f has P
Example
P = “has strength ≤ k” for fixed k ≥ 0.

Example (Kazhdan-Ziegler)
P = “all partial derivatives have strength ≤ k” for fixed k ≥ 0.

Theorem (Kazhdan-Ziegler, B-Draisma-Eggermont)
One of the following holds:
(1) Every polynomial has P.
(2) There exists an ` ≥ 0 such that f has P ⇒ str(f) ≤ `.
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Properties of strength

Qd,k,n: Is {f ∈ C[x1, . . . , xn]d | str(f) ≤ k} closed?

For k = 1, yes. (Union of images of projective morphisms).
For k = 2, I don’t know. (Conjecture: yes)
For d = 2, yes. (rank of symmetric matrices)
For d = 3, yes. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)
The {f ∈ C[x1, . . . , xn]4 | str(f) ≤ 3} is not closed for n� 0.

Consider
1/
t(x

2+tg)(y2+tf)−1/
t(u

2−tq)(v2−tp)−1/
t(xy−uv)(xy+uv)

=
x2f + y2g + u2p+ v2q + t(fg − pq)

It has strength ≤ 3. For t→ 0, we get x2f + y2g + u2p+ v2q.
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Strength ≤ 3 is not closed

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.

Consider the polynomial

h := x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4

where x, y, u, v have degree 1 and f, g, p, q︸ ︷︷ ︸
variables

have degree 2.

Proposition
The polynomial h has strength 4.
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Strength ≤ 3 is not closed

Definition
The strength of a polynomial h ∈ C[x, y, u, v, f, g, p, q]d is the
minimum number r ≥ 0 (when this exists) such that

h = g1 · h1 + . . .+ gr · hr

with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.
Example
The polynomial

f · g + x · (uh+ v3)

is irreducible and hence has strength 2.

Example
When the gi, hi have degree 1, then

g1 · h1 + . . .+ gr · hr ∈ C[x, y, u, v]2
Hence the variable f has infinite strength.
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Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.
1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p+ v2q 6= `1 · h1 + `2 · h2 + `3 · h3

for all `i ∈ C[x, y, u, v, f, g, p, q]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.

Strength of polynomials via polynomial functors Arthur Bik



Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.
1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p+ v2q 6= `1 · h1 + `2 · h2 + `3 · h3

for all `i ∈ C[x, y, u, v]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.

Think of R = C[x, y, u, v] as the set of coefficients.
So `i ∈ R and hi ∈ R[f, g, p, q].

The coefficients of f, g, p, q on the right are all in (`1, `2, `3).
The coefficients x2, y2, u2, v2 on the left are not all (`1, `2, `3).
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Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.

...

...

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.

How to bridge the gap?
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Polynomial functors

Definition
The polynomial functor Sd : Vec→ Vec is the functor

V 7→ Sd(V )
(L : V →W ) 7→

(
Sd(L) : Sd(V )→ Sd(W )

)
Cx1 ⊕ · · · ⊕ Cxn 7→ C[x1, . . . , xn]d

(xi 7→
∑

jcijyj) 7→ (xi 7→
∑

jcijyj)

Definition
A polynomial transformation

α : Sd1 ⊕ · · · ⊕ Sdk → Se1 ⊕ · · · ⊕ Se`

is of the form
(f1, . . . , fk) 7→ (F1(f1, . . . , fk), . . . , F`(f1, . . . , fk))

Here Fj ∈ C[X1, . . . , Xk]ej are fixed forms with deg(Xi) = di.
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Polynomial functors

Example
(g1, h1, g2, h2, g3, h3) 7→ g1 · h1 + g2 · h2 + g3 · h3

defines a polynomial transformation
α : (Sd1 ⊕ S4−d1)⊕ (Sd2 ⊕ S4−d2)⊕ (Sd3 ⊕ S4−d3)→ S4

for all fixed 1 ≤ d1 ≤ d2 ≤ d3 ≤ 2.
Definition
We define the inverse limit

Sd
∞ := {degree-d series in x1, x2, . . .} 3 xd

1 + xd
2 + xd

3 + . . .

Proposition (B-Draisma-Eggermont-Snowden)
Let p ∈ Sd

∞ be a series with projections pn ∈ C[x1, . . . , xn]d and
α : P → Sd a polynomial transformation. Then

p ∈ im(α∞)⇔ pn ∈ im(αn) for all n

Take p = x2f + y2g + u2p+ v2q for series some f, g, p, q ∈ S2
∞.
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Polynomial functors

Definition
Write Dd ⊆ Sd

∞ for the subspace of finite strength series.
A system of variables consists of a basis of Sd

∞/D
d for every d ≥ 1.

Proposition (B-Draisma-Eggermont-Snowden)
Let β : Se1 ⊕ · · · ⊕ Sek → Sd and α : P → Sd be polynomial
transformations. Let f1 ∈ Se1

∞, . . . , fk ∈ Sek∞ , p ∈ P∞ be a series.
Assume that β∞(f1, . . . , fk) = α∞(p) and that (f1, . . . , fk) is part
of a system of variables. Then there exists a polynomial
transformation γ : Se1 ⊕ · · · ⊕ Sek → P such that β = α ◦ γ.

Example (which closes the gap)
Take

β(x, y, u, v, f, g, p, q) = x2f + y2g + u2p+ v2q

α(g1, h1, g2, h2, g3, h3) = g1 · h1 + g2 · h2 + g3 · h3
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Strength ≤ 3 is not closed

Proposition
The polynomial

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.wwww� Polynomial functors

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p+ v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.

Thanks for your attention!
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