ED Degrees of Orthogonally Invariant Varieties

Arthur Bik
Mathematical Institute University of Bern

August 4 2017, SIAM AG17 joint work with Jan Draisma

ED degree of a variety

Fix a finite-dimensional complex vector space V, a non-degenerate symmetric bilinear form on V, a closed algebraic subvariety X of V (+ conditions).

ED degree of a variety

Fix a finite-dimensional complex vector space V, a non-degenerate symmetric bilinear form on V, a closed algebraic subvariety X of V (+ conditions).

Then for a sufficiently general $v \in V$ the positive number

$$
\#\left\{x \in X^{\mathrm{reg}} \mid v-x \perp T_{x} X\right\}
$$

is independent of v and is called the ED degree of X in V.

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

\boldsymbol{u}^{b}

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{Tr}\left(A B^{T}\right)
$$

is invariant.

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{Tr}\left(A B^{T}\right)
$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the $E D$ degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{Tr}\left(A B^{T}\right)
$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.
Observations:

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{Tr}\left(A B^{T}\right)
$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the $E D$ degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.
Observations:
(1) $\mathrm{O}(n) X_{0} \mathrm{O}(m)$ is dense in X. (Singular Value Decomposition)

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{Tr}\left(A B^{T}\right)
$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices. Then the ED degree of X in $\mathbb{C}^{n \times m}$ equals the $E D$ degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.
Observations:
(1) $\mathrm{O}(n) X_{0} \mathrm{O}(m)$ is dense in X. (Singular Value Decomposition)
(2) For $D \in \mathbb{C}^{n \times m}$ a sufficiently general diagonal matrix, we have

$$
\mathbb{C}^{n \times m}=\{\text { diagonal matrices }\} \oplus T_{D}(\mathrm{O}(n) D \mathrm{O}(m))
$$

Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).

Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).
Theorem (B, Draisma, 2017)
Let $V_{0} \subseteq V$ be a subspace and set $X_{0}:=X \cap V_{0}$. Assume that $G X_{0}$ is dense in X and that

$$
V=V_{0} \oplus T_{v_{0}} G v_{0}
$$

for sufficiently general $v_{0} \in V_{0}$. Then the ED degree of X in V equals the ED degree of X_{0} in V_{0}.

Sketch of proof

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

\boldsymbol{u}^{b}

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Lemma. $G V_{0}$ is dense in V.

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Lemma. $G V_{0}$ is dense in V.
\rightsquigarrow may assume $v=g \cdot \tilde{v}_{0}$

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Lemma. $G V_{0}$ is dense in V.
\rightsquigarrow may assume $v=g \cdot \tilde{v}_{0}$
Lemma. g maps critical points of u to critical points of $g u$ one-to-one.

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Lemma. $G V_{0}$ is dense in V.
\rightsquigarrow may assume $v=g \cdot \tilde{v}_{0}$
Lemma. g maps critical points of u to critical points of $g u$ one-to-one.
\rightsquigarrow may assume $v=\tilde{v}_{0}$

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Lemma. $G V_{0}$ is dense in V.
\rightsquigarrow may assume $v=g \cdot \tilde{v}_{0}$
Lemma. g maps critical points of u to critical points of $g u$ one-to-one.
\rightsquigarrow may assume $v=\tilde{v}_{0}=v_{0}$

Sketch of proof

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Lemma. $G V_{0}$ is dense in V.
\rightsquigarrow may assume $v=g \cdot \tilde{v}_{0}$
Lemma. g maps critical points of u to critical points of $g u$ one-to-one.
\rightsquigarrow may assume $v=\tilde{v}_{0}=v_{0}$
Lemma. Critical points of v_{0} for X and X_{0} are same.

Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).

Theorem (B, Draisma, 2017)
Let $V_{0} \subseteq V$ be a subspace and set $X_{0}:=X \cap V_{0}$. Assume that $G X_{0}$ is dense in X and that

$$
V=V_{0} \oplus T_{v_{0}} G v_{0}
$$

for sufficiently general $v_{0} \in V_{0}$. Then the ED degree of X in V equals the ED degree of X_{0} in V_{0}.

Example (Jiri Dadok)

Let $n>0$ be an integer. Take $G=\mathrm{GL}_{n}$ acting on

$$
V=\left\{(A, B) \in\left(\mathbb{C}^{n \times n}\right)^{2} \mid A=A^{T}, B=B^{T}\right\}
$$

by $g \cdot(A, B)=\left(g A g^{T}, g^{-T} B g^{-1}\right)$.

Example (Jiri Dadok)

Let $n>0$ be an integer. Take $G=\mathrm{GL}_{n}$ acting on

$$
V=\left\{(A, B) \in\left(\mathbb{C}^{n \times n}\right)^{2} \mid A=A^{T}, B=B^{T}\right\}
$$

by $g \cdot(A, B)=\left(g A g^{T}, g^{-T} B g^{-1}\right)$. The bilinear form given by

$$
((A, B),(C, D)) \mapsto \operatorname{Tr}(A D+B C)
$$

is invariant.

Example (Jiri Dadok)

Let $n>0$ be an integer. Take $G=\mathrm{GL}_{n}$ acting on

$$
V=\left\{(A, B) \in\left(\mathbb{C}^{n \times n}\right)^{2} \mid A=A^{T}, B=B^{T}\right\}
$$

by $g \cdot(A, B)=\left(g A g^{T}, g^{-T} B g^{-1}\right)$. The bilinear form given by

$$
((A, B),(C, D)) \mapsto \operatorname{Tr}(A D+B C)
$$

is invariant. Take $V_{0}=\left\{(D, D) \mid D \in \mathbb{C}^{n \times n}\right.$ diagonal $\}$.

Example (Jiri Dadok)

Let $n>0$ be an integer. Take $G=\mathrm{GL}_{n}$ acting on

$$
V=\left\{(A, B) \in\left(\mathbb{C}^{n \times n}\right)^{2} \mid A=A^{T}, B=B^{T}\right\}
$$

by $g \cdot(A, B)=\left(g A g^{T}, g^{-T} B g^{-1}\right)$. The bilinear form given by

$$
((A, B),(C, D)) \mapsto \operatorname{Tr}(A D+B C)
$$

is invariant. Take $V_{0}=\left\{(D, D) \mid D \in \mathbb{C}^{n \times n}\right.$ diagonal $\}$. Then

$$
V=V_{0} \oplus T_{(D, D)} G(D, D)
$$

for all invertible $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{i}^{2} \neq d_{j}^{2}$ for $i \neq j$.

\boldsymbol{u}^{b}

Classification

Let G be reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.

Classification

Let G be reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.
Theorem (B, Draisma, 2017)
The following are equivalent:
(1) V has a subspace V_{0} such that

$$
V=V_{0} \oplus T_{v_{0}} G v_{0}
$$

for sufficiently general $v_{0} \in V_{0}$.
(2) V is a stable polar representation.
(3) $V_{\mathbb{R}}$ is a polar representation.

Classification

Let G be reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.
Theorem (B, Draisma, 2017)
The following are equivalent:
(1) V has a subspace V_{0} such that

$$
V=V_{0} \oplus T_{v_{0}} G v_{0}
$$

for sufficiently general $v_{0} \in V_{0}$.
(2) V is a stable polar representation.
(3) $V_{\mathbb{R}}$ is a polar representation.

Dadok classified irreducible polar representations of compact Lie groups.

Polar representations

Definition

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$
\left\{x \in V \mid T_{x} G x \subseteq T_{v} G v\right\}
$$

has dimension $\operatorname{dim}(V / G)$.

Polar representations

Definition

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$
\left\{x \in V \mid T_{x} G x \subseteq T_{v} G v\right\}
$$

has dimension $\operatorname{dim}(V / G)$.

Definition

A real representation V of a compact Lie group K is polar if there is a vector $v \in V$, whose orbit is maximal-dimensional, such that for all $u \in\left(T_{v} K v\right)^{\perp}$ we have $T_{u} K u \subseteq T_{v} K v$.

Classification

Complexification of Dadok's list:

G	V
G semisimple	\mathfrak{g}
$\mathrm{O}(n)$	\mathbb{C}^{n}
$\mathrm{O}(n)$	$\mathrm{Sym}^{2}\left(\mathbb{C}^{n}\right)$
$\mathrm{O}(n) \times \mathrm{O}(m)$	$\mathbb{C}^{n \times m}$
$\mathrm{Sp}(n)$	$\Lambda^{2}\left(\mathbb{C}^{2 n}\right)$
$\mathrm{Sp}(n) \times \mathrm{Sp}(m)$	$\mathbb{C}^{2 n \times 2 m}$
$\mathrm{SL}(V)$	$V \oplus V^{*}$
$\mathrm{GL}(V)$	$\operatorname{Sym}^{2}(V) \oplus \operatorname{Sym}^{2}(V)^{*}$
$\mathrm{GL}(V)$	$\Lambda^{2}(V) \oplus \Lambda^{2}(V)^{*}$
$\mathrm{Sp}(n)$	$\mathbb{C}^{2 n} \oplus\left(\mathbb{C}^{2 n}\right)^{*}$
$\mathrm{GL}_{n} \times \mathrm{GL}_{m}$	$\mathbb{C}^{n \times m} \oplus\left(\mathbb{C}^{n \times m}\right)^{*}$
SL_{2}	$\operatorname{Sym}^{4}\left(\mathbb{C}^{2}\right)$
\vdots	\vdots

Thank you for your attention!

References
(in Dadok, Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504-524.
E. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125-137.
Draisma, Horobet, Ottaviani, Sturmfels, Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math. 16 (2016), 99-149.

Drusvyatskiy, Lee, Ottaviani, Thomas, The Euclidean distance degree of orthogonally invariant matrix varieties, to appear in Israel J. Math.

