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ED degree of a variety

Fix a finite-dimensional complex vector space V ,
a non-degenerate symmetric bilinear form on V ,
a closed algebraic subvariety X of V (+ conditions).

Then for a sufficiently general v P V the positive number

#
!

x P Xreg
ˇ

ˇ

ˇ
v ´ x K TxX

)

is independent of v and is called the ED degree of X in V .

2



ED degree of a variety

Fix a finite-dimensional complex vector space V ,
a non-degenerate symmetric bilinear form on V ,
a closed algebraic subvariety X of V (+ conditions).

Then for a sufficiently general v P V the positive number

#
!

x P Xreg
ˇ

ˇ

ˇ
v ´ x K TxX

)

is independent of v and is called the ED degree of X in V .

2



Example: unit circle

x2 ` y2 “ 1

ÝÑ
O2
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Orthogonally invariant matrix varieties

The group Opnq ˆOpmq acts on the space Cnˆm of nˆm matrices.
The bilinear form

pA,Bq ÞÑ TrpABT q

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)
Let X be the closure in Cnˆm of a stable real subvariety of Rnˆm with
smooth points and let X0 be the subset of X of diagonal matrices. Then
the ED degree of X in Cnˆm equals the ED degree of X0 in the
subspace of Cnˆm of all diagonal matrices.
Observations:
(1) OpnqX0Opmq is dense in X. (Singular Value Decomposition)
(2) For D P Cnˆm a sufficiently general diagonal matrix, we have

Cnˆm “ tdiagonal matricesu k TD pOpnqDOpmqq .
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Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X
be a G-stable closed subvariety of V (+ conditions).

Theorem (B, Draisma, 2017)
Let V0 Ď V be a subspace and set X0 :“ X X V0. Assume that GX0 is
dense in X and that

V “ V0 k Tv0Gv0

for sufficiently general v0 P V0. Then the ED degree of X in V equals the
ED degree of X0 in V0.
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Sketch of proof

Let v P V and v0 P V0 be sufficiently general. We want:

#
!

x P Xreg
ˇ

ˇ

ˇ
v ´ x K TxX

)

“ #
!

x P X
reg
0

ˇ

ˇ

ˇ
v0 ´ x K TxX0

)

Lemma. GV0 is dense in V .
 may assume v “ g ¨ ṽ0

Lemma. g maps critical points of u to critical points of gu one-to-one.
 may assume v “ ṽ0 “ v0

Lemma. Critical points of v0 for X and X0 are same.
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Lemma. Critical points of v0 for X and X0 are same.

7



Sketch of proof

Let v P V and v0 P V0 be sufficiently general. We want:

#
!

x P Xreg
ˇ

ˇ

ˇ
v ´ x K TxX

)

“ #
!

x P X
reg
0

ˇ

ˇ

ˇ
v0 ´ x K TxX0

)

Lemma. GV0 is dense in V .
 may assume v “ g ¨ ṽ0
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Example (Jiri Dadok)

Let n ą 0 be an integer. Take G “ GLn acting on

V “ tpA,Bq P pCnˆnq2|A “ AT , B “ BT u

by g ¨ pA,Bq “ pgAgT , g´TBg´1q.

The bilinear form given by

ppA,Bq, pC,Dqq ÞÑ TrpAD `BCq

is invariant. Take V0 “ tpD,Dq|D P Cnˆn diagonalu. Then

V “ V0 k TpD,DqGpD,Dq

for all invertible D “ diagpd1, . . . , dnq with d2i ‰ d2j for i ‰ j.
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Classification

Let G be reductive. Let K be a maximal compact subgroup of G and let
VR a real representation of K whose complexification is V .

Theorem (B, Draisma, 2017)
The following are equivalent:

(1) V has a subspace V0 such that

V “ V0 k Tv0Gv0

for sufficiently general v0 P V0.

(2) V is a stable polar representation.

(3) VR is a polar representation.

Dadok classified irreducible polar representations of compact Lie groups.
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Polar representations

Definition
A complex representation V of an reductive algebraic group G is stable
polar if there is a vector v P V , whose orbit is maximal-dimensional and
closed, such that the subspace

tx P V |TxGx Ď TvGvu

has dimension dimpV {Gq.

Definition
A real representation V of a compact Lie group K is polar if there is a
vector v P V , whose orbit is maximal-dimensional, such that for all
u P pTvKvqK we have TuKu Ď TvKv.
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Classification

Complexification of Dadok’s list:

G V

G semisimple g

Opnq Cn

Opnq Sym2
pCn

q

Opnq ˆOpmq Cnˆm

Sppnq Λ2
pC2n

q

Sppnq ˆ Sppmq C2nˆ2m

SLpV q V ‘ V ˚

GLpV q Sym2
pV q ‘ Sym2

pV q˚

GLpV q Λ2
pV q ‘ Λ2

pV q˚

Sppnq C2n
‘pC2n

q
˚

GLn ˆGLm Cnˆm
‘pCnˆm

q
˚

SL2 Sym4
pC2
q

...
...

12



Thank you for your attention!
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