h

ED Degrees of Orthogonally Invariant Varieties

Arthur Bik Mathematical Institute University of Bern

August 4 2017, SIAM AG17

joint work with Jan Draisma

ED degree of a variety

0 UNIVERSITÄT BERN

Fix a finite-dimensional complex vector space V, a non-degenerate symmetric bilinear form on V, a closed algebraic subvariety X of V (+ *conditions*).

ED degree of a variety

0 UNIVERSITÄT BERN

Fix a finite-dimensional complex vector space V, a non-degenerate symmetric bilinear form on V, a closed algebraic subvariety X of V (+ *conditions*).

Then for a sufficiently general $v \in V$ the *positive* number

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\}$$

is independent of v and is called the ED degree of X in V.

 $u^{\scriptscriptstyle b}$

$$x^2 + y^2 = 1$$

 $u^{\scriptscriptstyle b}$

$$x^2 + y^2 = 1$$

 $u^{\scriptscriptstyle b}$

$$x^2 + y^2 = 1$$

 $u^{\scriptscriptstyle b}$

$$x^2 + y^2 = 1$$

$$x^2 + y^2 = 1$$

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{Tr}(AB^T)$$

is invariant.

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A, B) \mapsto \operatorname{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let *X* be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of *X* of diagonal matrices. Then the ED degree of *X* in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A, B) \mapsto \operatorname{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let *X* be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of *X* of diagonal matrices. Then the ED degree of *X* in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices. Observations:

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A, B) \mapsto \operatorname{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let *X* be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of *X* of diagonal matrices. Then the ED degree of *X* in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Observations:

(1) $O(n)X_0O(m)$ is dense in X. (Singular Value Decomposition)

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A, B) \mapsto \operatorname{Tr}(AB^T)$$

is invariant.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

Let *X* be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of *X* of diagonal matrices. Then the ED degree of *X* in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Observations:

(1) $O(n)X_0O(m)$ is dense in X. (Singular Value Decomposition)

(2) For $D \in \mathbb{C}^{n \times m}$ a sufficiently general diagonal matrix, we have

 $\mathbb{C}^{n \times m} = \{ \text{diagonal matrices} \} \oplus T_D \left(\mathcal{O}(n) D \mathcal{O}(m) \right).$

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ *conditions*).

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ *conditions*).

Theorem (B, Draisma, 2017)

Let $V_0 \subseteq V$ be a subspace and set $X_0 := X \cap V_0$. Assume that GX_0 is dense in X and that

$$V = V_0 \oplus T_{v_0} G v_0$$

for sufficiently general $v_0 \in V_0$. Then the ED degree of X in V equals the ED degree of X_0 in V_0 .

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

Lemma. GV_0 is dense in V.

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

Lemma. GV_0 is dense in V. \rightsquigarrow may assume $v = g \cdot \tilde{v}_0$

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

Lemma. GV_0 is dense in V. \rightsquigarrow may assume $v = g \cdot \tilde{v}_0$

Lemma. g maps critical points of u to critical points of gu one-to-one.

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

Lemma. GV_0 is dense in V. \rightsquigarrow may assume $v = g \cdot \tilde{v}_0$

Lemma. g maps critical points of u to critical points of gu one-to-one. \rightsquigarrow may assume $v = \tilde{v}_0$

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

Lemma. GV_0 is dense in V. \rightsquigarrow may assume $v = g \cdot \tilde{v}_0$

Lemma. *g* maps critical points of *u* to critical points of *gu* one-to-one. \rightsquigarrow may assume $v = \tilde{v}_0 = v_0$

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

Lemma. GV_0 is dense in V. \rightsquigarrow may assume $v = g \cdot \tilde{v}_0$

Lemma. g maps critical points of u to critical points of gu one-to-one. \rightsquigarrow may assume $v = \tilde{v}_0 = v_0$

Lemma. Critical points of v_0 for X and X_0 are same.

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V (+ conditions).

Theorem (B, Draisma, 2017)

Let $V_0 \subseteq V$ be a subspace and set $X_0 := X \cap V_0$. Assume that GX_0 is dense in X and that

$$V = V_0 \oplus T_{v_0} G v_0$$

for sufficiently general $v_0 \in V_0$. Then the ED degree of X in V equals the ED degree of X_0 in V_0 .

Let n > 0 be an integer. Take $G = GL_n$ acting on

$$V = \{ (A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T \}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1}).$

Let n > 0 be an integer. Take $G = GL_n$ acting on

$$V = \{ (A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T \}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1})$. The bilinear form given by $((A, B), (C, D)) \mapsto \operatorname{Tr}(AD + BC)$

is invariant.

Let n > 0 be an integer. Take $G = GL_n$ acting on

$$V = \{ (A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T \}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1})$. The bilinear form given by $((A, B), (C, D)) \mapsto \text{Tr}(AD + BC)$

is invariant. Take $V_0 = \{(D, D) | D \in \mathbb{C}^{n \times n} \text{ diagonal} \}.$

Let n > 0 be an integer. Take $G = GL_n$ acting on

$$V = \{ (A, B) \in (\mathbb{C}^{n \times n})^2 | A = A^T, B = B^T \}$$

by $g \cdot (A, B) = (gAg^T, g^{-T}Bg^{-1})$. The bilinear form given by $((A, B), (C, D)) \mapsto \text{Tr}(AD + BC)$

is invariant. Take $V_0 = \{(D, D) | D \in \mathbb{C}^{n \times n} \text{ diagonal} \}$. Then

 $V = V_0 \oplus T_{(D,D)}G(D,D)$

for all invertible $D = \text{diag}(d_1, \ldots, d_n)$ with $d_i^2 \neq d_j^2$ for $i \neq j$.

Let G be reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.

Let *G* be reductive. Let *K* be a maximal compact subgroup of *G* and let $V_{\mathbb{R}}$ a real representation of *K* whose complexification is *V*.

Theorem (B, Draisma, 2017)

The following are equivalent:

(1) V has a subspace V_0 such that

$$V = V_0 \oplus T_{v_0} G v_0$$

for sufficiently general $v_0 \in V_0$.

- (2) V is a stable polar representation.
- (3) $V_{\mathbb{R}}$ is a polar representation.

Let *G* be reductive. Let *K* be a maximal compact subgroup of *G* and let $V_{\mathbb{R}}$ a real representation of *K* whose complexification is *V*.

Theorem (B, Draisma, 2017)

The following are equivalent:

(1) V has a subspace V_0 such that

$$V = V_0 \oplus T_{v_0} G v_0$$

for sufficiently general $v_0 \in V_0$.

- (2) V is a stable polar representation.
- (3) $V_{\mathbb{R}}$ is a polar representation.

Dadok classified irreducible polar representations of compact Lie groups.

Polar representations

UNIVERSITÄT BERN

Definition

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$\{x \in V | T_x G x \subseteq T_v G v\}$$

has dimension $\dim(V/G)$.

Polar representations

UNIVERSITÄT BERN

Definition

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$\{x \in V | T_x G x \subseteq T_v G v\}$$

has dimension $\dim(V/G)$.

Definition

A real representation V of a compact Lie group K is polar if there is a vector $v \in V$, whose orbit is maximal-dimensional, such that for all $u \in (T_v K v)^{\perp}$ we have $T_u K u \subseteq T_v K v$.

UNIVERSITÄT BERN

Complexification of Dadok's list:

V
g
\mathbb{C}^n
$\operatorname{Sym}^2(\mathbb{C}^n)$
$\mathbb{C}^{n imes m}$
$\Lambda^2(\mathbb{C}^{2n})$
$\mathbb{C}^{2n imes 2m}$
$V \oplus V^*$
$\operatorname{Sym}^2(V) \oplus \operatorname{Sym}^2(V)^*$
$\Lambda^2(V) \oplus \Lambda^2(V)^*$
$\mathbb{C}^{2n} \oplus (\mathbb{C}^{2n})^*$
$\mathbb{C}^{n imes m} \oplus (\mathbb{C}^{n imes m})^*$
$\operatorname{Sym}^4(\mathbb{C}^2)$
:

UNIVERSITÄT BERN

Thank you for your attention!

References

REDA

- Dadok, Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504-524.
- Dadok, *Polar coordinates induced by actions of compact Lie groups*, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125-137.
- Draisma, Horobet, Ottaviani, Sturmfels, Thomas, The Euclidean distance degree of an algebraic variety, Found. Comput. Math. 16 (2016), 99-149.
- Drusvyatskiy, Lee, Ottaviani, Thomas, The Euclidean distance degree of orthogonally invariant matrix varieties, to appear in Israel J. Math.