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The rank of infinite-by-infinite matrices

Definition: The rank of an NˆN matrix A is

rkpAq :“ suptrkpBq | finite submatrices B of Au P Zě0Yt8u

Lemma
A P CNˆN has rank ď k ô A “

řk
i“1 viw

T
i with vi, wi P CN

Example/Theorem
An NˆN matrix A has rank 8ô GL8 ¨A ¨GL8 “ CNˆN

Proof. An equation on CNˆN uses only finitely many rows and columns.
So non-zero equations on GL8 ¨A ¨GL8 give rank constraints on A.

Fact: An nˆm matrix A has rank minpn,mq ô GLn ¨A ¨GLm “ Cnˆm
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Other Examples/Theorems

Definition: The rank of a tuple of NˆN matrices A1, . . . , Ak is

rkpA1, . . . , Akq :“ inftrkpλ1A1 ` ¨ ¨ ¨ ` λkAkq | pλ1 : ¨ ¨ ¨ : λkq P Pk´1u

Example/Theorem (Draisma-Eggermont)
rkpA1, . . . , Akq “ 8 ô GL8 ¨pA1, . . . , Akq ¨GL8 “ pCNˆNqk

Definition: The q-rank of a series

f “ a111x
3
1 ` a112x

2
1x2 ` ¨ ¨ ¨ ` aijkxixjxk ` . . .

is the minimal k ď 8 such that f “ `1q1 ` ¨ ¨ ¨ ` `kqk with degp`iq “ 1.

Example/Theorem (Derksen-Eggermont-Snowden)
qrkpfq “ 8 ô GL8 ¨f “ lim

ÐÝn
Crx1, . . . , xnsp3q
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Other Examples/Theorems

Take d ě 2.

Definition (Ananyan-Hochster)
The strength of a polynomial f P Crx0, . . . , xnspdq is the minimal k such
that

f “ g1h1 ` ¨ ¨ ¨ ` gkhk

with g1, . . . , gk, h1, . . . , hk P Crx0, . . . , xns homogeneous of degree ă d.

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let Xn Ď Crx1, . . . , xnspdq be a closed subset such that:

p˚q We have f ˝ ` P Xm for all f P Xn and all linear maps ` : Cm Ñ Cn.

Then either Xn “ Crx1, . . . , xnspdq for all n ě 0 or there is a k ă 8 such
that strpfq ď k for all f P Xn and n ě 0.

Remark: This version implies the infinite version using Lang’s theorem.
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Polynomial functors

Vec “ category of finite-dimensional vector spaces over C.
Definition
A polynomial functor P assigns to V P Vec a P pV q P Vec and to
pV,W q P Vec2 a polynomial map HomCpV,W q Ñ HomCpP pV q, P pW qq
such that P pidV q “ idP pV q for all V P Vec and P pϕ ˝ ψq “ P pϕq ˝ P pψq
for all linear maps ψ : V ÑW and ϕ : W Ñ U .
Examples
‚ Constants: V ÞÑ U for U P Vec fixed.
‚ Linear functors: V ÞÑ U b V for U P Vec fixed.
‚ Matrices: V ÞÑ V b V
‚ Polynomials: V ÞÑ SdV

Remark: The class of polynomial functors is closed under direct sums,
tensor products, quotients and subfunctors. Polynomial functors have a
degree. (This can be infinite, but we don’t consider such poly functors.)



Polynomial transformations and
Closed subsets of polynomial functors

Definition
Let P,Q be polynomial functors. A polynomial transformation α : QÑ P
is a family pαV : QpV q Ñ P pV qqV PVec of polynomial maps such that

QpV q

Qp`q

��

αV // P pV q

P p`q

��

QpW q
αW // P pW q

commutes for all linear maps ` : V ÑW .

Definition
A closed subset X Ď P of a polynomial functor assigns to each V P Vec
a closed subset XpV q Ď P pV q such that ppϕqpXpV qq Ď XpW q for all
linear maps ` : V ÑW .
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The dichotomy

Let P,Q be polynomial functors. Write Q ă P when Qpdq is a quotient of
Ppdq where d is maximal with Qpdq fl Ppdq.

Theorem (B-Draisma-Eggermont-Snowden)
Let X Ď P be a closed subset. Then X “ P or there are
Q1, . . . , Qk ă P and αi : Qi Ñ P such that X Ď

Ť

i impαiq.

Examples

‚ tmatrices of rank ď ku “ tv1w
T
1 ` ¨ ¨ ¨ ` vkw

T
k | vi, wi vectorsu

‚ tdegree d polynomials that are zero on a codim k subspaceu “
t`1g1 ` ¨ ¨ ¨ ` `kgk | degp`iq “ 1,degpgiq “ d´ 1u
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Consequences

‚ All the previous Examples/Theorems

‚ Theorem (Draisma)
Every descending chain P Ľ X1 Ě X2 Ě ... of closed subsets
stabilizes.
Proof. Using induction on P :
Take Q1, . . . , Qk ă P and αi : Qi Ñ P such that X1 Ď

Ť

i impαiq
and pull back the chain of closed subsets along each αi. The
resulting chains all have to stabilize.

‚ Theorem (B-Draisma-Eggermont-Snowden)
The map α ÞÑ impαq is a surjection from
tpolynomial transformations into P u to
!

closures of GL8-orbits in lim
ÐÝn

P pCnq
)

.
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