b

Strength and polynomial functors

Arthur Bik University of Bern

SIAM AG 2019, Bern, 9 July 2019

The rank of infinite-by-infinite matrices

b

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix *A* is

 $\operatorname{rk}(A) := \sup \{ \operatorname{rk}(B) \mid \text{finite submatrices } B \text{ of } A \} \in \mathbb{Z}_{\geq 0} \cup \{ \infty \}$

Lemma $A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k \Leftrightarrow A = \sum_{i=1}^{k} v_i w_i^T$ with $v_i, w_i \in \mathbb{C}^{\mathbb{N}}$

The rank of infinite-by-infinite matrices

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix *A* is

 $\operatorname{rk}(A) := \sup\{\operatorname{rk}(B) \mid \text{finite submatrices } B \text{ of } A\} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$

Lemma $A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k \Leftrightarrow A = \sum_{i=1}^{k} v_i w_i^T$ with $v_i, w_i \in \mathbb{C}^{\mathbb{N}}$

Example/Theorem

An $\mathbb{N} \times \mathbb{N}$ matrix A has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} = \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$

The rank of infinite-by-infinite matrices

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix *A* is

 $\operatorname{rk}(A) := \sup\{\operatorname{rk}(B) \mid \text{finite submatrices } B \text{ of } A\} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$

Lemma

$$A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$$
 has rank $\leqslant k \Leftrightarrow A = \sum_{i=1}^{k} v_i w_i^T$ with $v_i, w_i \in \mathbb{C}^{\mathbb{N}}$

Example/Theorem

An $\mathbb{N} \times \mathbb{N}$ matrix A has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} = \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$

Proof. An equation on $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ uses only finitely many rows and columns. So non-zero equations on $\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$ give rank constraints on A.

Fact: An $n \times m$ matrix A has rank $\min(n, m) \Leftrightarrow \overline{\operatorname{GL}_n \cdot A \cdot \operatorname{GL}_m} = \mathbb{C}^{n \times m}$

Definition: The rank of a tuple of $\mathbb{N} \times \mathbb{N}$ matrices A_1, \ldots, A_k is

 $\operatorname{rk}(A_1,\ldots,A_k) := \inf \{ \operatorname{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \mid (\lambda_1 : \cdots : \lambda_k) \in \mathbb{P}^{k-1} \}$

Example/Theorem (Draisma-Eggermont) $\operatorname{rk}(A_1, \ldots, A_k) = \infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot (A_1, \ldots, A_k) \cdot \operatorname{GL}_{\infty}} = (\mathbb{C}^{\mathbb{N} \times \mathbb{N}})^k$

Definition: The rank of a tuple of $\mathbb{N} \times \mathbb{N}$ matrices A_1, \ldots, A_k is

 $\operatorname{rk}(A_1,\ldots,A_k) := \inf \{ \operatorname{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \mid (\lambda_1 : \cdots : \lambda_k) \in \mathbb{P}^{k-1} \}$

Example/Theorem (Draisma-Eggermont) $\operatorname{rk}(A_1, \ldots, A_k) = \infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot (A_1, \ldots, A_k) \cdot \operatorname{GL}_{\infty}} = (\mathbb{C}^{\mathbb{N} \times \mathbb{N}})^k$

Definition: The q-rank of a series

$$f = a_{111}x_1^3 + a_{112}x_1^2x_2 + \dots + a_{ijk}x_ix_jx_k + \dots$$

is the minimal $k \leq \infty$ such that $f = \ell_1 q_1 + \cdots + \ell_k q_k$ with $\deg(\ell_i) = 1$.

Example/Theorem (Derksen-Eggermont-Snowden) $\operatorname{qrk}(f) = \infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot f} = \varprojlim_n \mathbb{C}[x_1, \dots, x_n]_{(3)}$

UNIVERSITÄT BERN

Take $d \ge 2$.

Definition (Ananyan-Hochster) The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \dots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree < d.

b UNIVERSITÄT BERN

Take $d \ge 2$.

Definition (Ananyan-Hochster) The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \dots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree < d. **Example/Theorem** (B-Draisma-Eggermont, Kazhdan-Ziegler) For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ be a closed subset such that: (*) We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell \colon \mathbb{C}^m \to \mathbb{C}^n$.

^b UNIVERSITÄT BERN

Take $d \ge 2$.

Definition (Ananyan-Hochster)

The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \dots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree < d. **Example/Theorem** (B-Draisma-Eggermont, Kazhdan-Ziegler) For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ be a closed subset such that: (*) We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell \colon \mathbb{C}^m \to \mathbb{C}^n$. Then either $X_n = \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ for all $n \ge 0$

b UNIVERSITÄT BERN

Take $d \ge 2$.

Definition (Ananyan-Hochster) The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \dots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree < d. **Example/Theorem** (B-Draisma-Eggermont, Kazhdan-Ziegler) For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ be a closed subset such that: (*) We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell \colon \mathbb{C}^m \to \mathbb{C}^n$. Then either $X_n = \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ for all $n \ge 0$ or there is a $k < \infty$ such that $\operatorname{str}(f) \le k$ for all $f \in X_n$ and $n \ge 0$.

^b UNIVERSITÄT BERN

Take $d \ge 2$.

Definition (Ananyan-Hochster) The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \dots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree < d. **Example/Theorem** (B-Draisma-Eggermont, Kazhdan-Ziegler) For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ be a closed subset such that: (*) We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell \colon \mathbb{C}^m \to \mathbb{C}^n$. Then either $X_n = \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ for all $n \ge 0$ or there is a $k < \infty$ such that $\operatorname{str}(f) \le k$ for all $f \in X_n$ and $n \ge 0$.

Remark: This version implies the infinite version using Lang's theorem.

Polynomial functors

 Vec = category of finite-dimensional vector spaces over \mathbb{C} .

Definition

A polynomial functor P assigns to $V \in \text{Vec}$ a $P(V) \in \text{Vec}$ and to $(V, W) \in \text{Vec}^2$ a polynomial map $\text{Hom}_{\mathbb{C}}(V, W) \to \text{Hom}_{\mathbb{C}}(P(V), P(W))$ such that $P(\text{id}_V) = \text{id}_{P(V)}$ for all $V \in \text{Vec}$ and $P(\varphi \circ \psi) = P(\varphi) \circ P(\psi)$ for all linear maps $\psi \colon V \to W$ and $\varphi \colon W \to U$.

Examples

- Constants: $V \mapsto U$ for $U \in \text{Vec}$ fixed.
- Linear functors: $V \mapsto U \otimes V$ for $U \in \text{Vec}$ fixed.
- Matrices: $V \mapsto V \otimes V$
- Polynomials: $V \mapsto S^d V$

Remark: The class of polynomial functors is closed under direct sums, tensor products, quotients and subfunctors. Polynomial functors have a degree. (This can be infinite, but we don't consider such poly functors.)

Polynomial transformations and Closed subsets of polynomial functors

Definition

Let P, Q be polynomial functors. A polynomial transformation $\alpha \colon Q \to P$ is a family $(\alpha_V \colon Q(V) \to P(V))_{V \in \text{Vec}}$ of polynomial maps such that

$$Q(V) \xrightarrow{\alpha_V} P(V)$$

$$\downarrow Q(\ell) \qquad \qquad \downarrow P(\ell)$$

$$Q(W) \xrightarrow{\alpha_W} P(W)$$

commutes for all linear maps $\ell \colon V \to W$.

Polynomial transformations and Closed subsets of polynomial functors

Definition

Let P, Q be polynomial functors. A polynomial transformation $\alpha \colon Q \to P$ is a family $(\alpha_V \colon Q(V) \to P(V))_{V \in \text{Vec}}$ of polynomial maps such that

 $\begin{array}{c} Q(V) \xrightarrow{\alpha_{V}} P(V) \\ & \downarrow^{Q(\ell)} & \downarrow^{P(\ell)} \\ Q(W) \xrightarrow{\alpha_{W}} P(W) \end{array}$

commutes for all linear maps $\ell \colon V \to W$.

Definition

A closed subset $X \subseteq P$ of a polynomial functor assigns to each $V \in \text{Vec}$ a closed subset $X(V) \subseteq P(V)$ such that $p(\varphi)(X(V)) \subseteq X(W)$ for all linear maps $\ell \colon V \to W$.

The dichotomy

Let P, Q be polynomial functors. Write Q < P when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.

The dichotomy

UNIVERSITÄT REPN

Let P, Q be polynomial functors. Write Q < P when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.

Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then X = P or there are $Q_1, \ldots, Q_k < P$ and $\alpha_i \colon Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

The dichotomy

UNIVERSITÄT

Let P, Q be polynomial functors. Write Q < P when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.

Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then X = P or there are $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

Examples

- {matrices of rank $\leq k$ } = { $v_1 w_1^T + \dots + v_k w_k^T \mid v_i, w_i \text{ vectors}$ }
- {degree *d* polynomials that are zero on a codim *k* subspace} = $\{\ell_1 g_1 + \dots + \ell_k g_k \mid \deg(\ell_i) = 1, \deg(g_i) = d 1\}$

UNIVERSITÄT BERN

• All the previous Examples/Theorems

0 UNIVERSITÄT BERN

- All the previous Examples/Theorems
- Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots$ of closed subsets stabilizes.

- All the previous Examples/Theorems
- Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots$ of closed subsets stabilizes.

Proof. Using induction on *P*:

Take $Q_1, \ldots, Q_k < P$ and $\alpha_i \colon Q_i \to P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

- All the previous Examples/Theorems
- Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots$ of closed subsets stabilizes.

Proof. Using induction on *P*:

Take $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon Q_i \to P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

• **Theorem** (B-Draisma-Eggermont-Snowden) The map $\alpha \mapsto \overline{\operatorname{im}(\alpha)}$ is a surjection from {polynomial transformations into P} to {closures of $\operatorname{GL}_{\infty}$ -orbits in $\lim_{\leftarrow n} P(\mathbb{C}^n)$ }.

References

- Ananyan, Hochster, *Small subalgebras of polynomial rings and Stillman's conjecture*, preprint.
- Bik, Draisma, Eggermont, *Polynomials and tensors of bounded strength*, Commun. Contemp. Math., to appear.
- Derksen, Eggermont, Snowden, *Topological noetherianity for cubic polynomials*, Algebra Number Theory 11(9), 2197–2212, 2017.
- Draisma, Topological Noetherianity of polynomial functors, Journal of the AMS 32(3), 691–707, 2019.
- Draisma, Eggermont, *Plücker varieties and higher secants of Sato's Grassmannian*, J. Reine Angew. Math. 737, 189–215, 2018.
- Kazhdan, Ziegler, *Properties of high rank subvarieties of affine spaces*, preprint.