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The rank of infinite-by-infinite matrices




b
u

The rank of infinite-by-infinite matrices

b
UNIVERSITAT
BERN

Definition: The rank of an N x N matrix A is
rk(A) := sup{rk(B) | finite submatrices B of A} € Z~o u{co}

Lemma
AeC"*Nhasrank < k< A = 37 vaw] with v;, w; € CY

Example/Theorem
An N x N matrix A has rank o0 < GL,, ‘A - GLo, = CNV*N
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Definition: The rank of an N x N matrix A is
rk(A) := sup{rk(B) | finite submatrices B of A} € Z~o u{co}

Lemma
AeC"*Nhasrank < k< A = 37 vaw] with v;, w; € CY

Example/Theorem
An N x N matrix A has rank o0 < GL,, ‘A - GLo, = CNV*N

Proof. An equation on CY* ! uses only finitely many rows and columns.
So non-zero equations on GL; -A - GL, give rank constraints on A. [

Fact: An n x m matrix A has rank min(n, m) < GL, -A - GL,,, = C"*™
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Other Examples/Theorems
Definition: The rank of a tuple of N x N matrices Ay, ..., A is
rk(Ayq, ..., Ag) = inf{rk(\ Ay + - + MAg) | Az Ag) e PPY

Example/Theorem (Draisma-Eggermont)
I‘k(Al, 500 ,Ak) = 0 <= GLOO -(Al, 000 ,Ak) : GLOO = (CNXN)k
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Other Examples/Theorems
Definition: The rank of a tuple of N x N matrices Ay, ..., A is
rk(Ayq, ..., Ag) = inf{rk(\ Ay + - + MAg) | Az Ag) e PPY

Example/Theorem (Draisma-Eggermont)
I‘k(Al, 500 ,Ak) = 0 <= GLOO -(Al, 000 ,Ak) : GLOO = (CNXN)k

Definition: The g-rank of a series
f= aulw? + a112$%$2 + o F apTixTE +
is the minimal k < oo such that f = ¢1q; + - - - + Lxqx With deg(¥;) = 1.

Example/Theorem (Derksen-Eggermont-Snowden)
qu(f) = 0 < GLOO f = Llnn (C[.I'l, 500 7-7;77,](3)
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Other Examples/Theorems
Take d > 2.
Definition (Ananyan-Hochster)
The strength of a polynomial f € C[xo, ..., Zs](q) is the minimal & such
that

f=gih1 + -+ grhg

with g1, ..., gk, h1, ..., hg € Clxo, ..., x,] homogeneous of degree < d.
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Other Examples/Theorems
Take d > 2.
Definition (Ananyan-Hochster)
The strength of a polynomial f € C[xo, ..., Zs](q) is the minimal & such
that

f=gthi +- + grhg
with g1, ..., gk, h1, ..., hg € Clxo, ..., x,] homogeneous of degree < d.
Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let X,, < C[z,... ,xn](d) be a closed subset such that:

(*) We have f ol e X, forall f € X,, and all linear maps ¢: C™ — C".
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Other Examples/Theorems
Take d > 2.
Definition (Ananyan-Hochster)
The strength of a polynomial f € C[xo, ..., Zs](q) is the minimal & such
that

f=gthi +- + grhg
with g1, ..., gk, h1, ..., hg € Clxo, ..., x,] homogeneous of degree < d.

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let X,, < C[z,... ,xn](d) be a closed subset such that:

(*) We have f ol e X, forall f € X,, and all linear maps ¢: C™ — C".
Then either X,, = C[z,... ,xn](d) forallm >0
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Other Examples/Theorems

Take d > 2.

Definition (Ananyan-Hochster)
The strength of a polynomial f € C[xo, ..., Zs](q) is the minimal & such
that

f=gthi +- + grhg

with g1, ..., gk, h1, ..., hg € Clxo, ..., x,] homogeneous of degree < d.

Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let X,, < C[z,... ,xn](d) be a closed subset such that:

(*) We have f ol e X, forall f € X,, and all linear maps ¢: C™ — C".

Then either X, = C[x1,...,2n]q) foralln > 0 or there is a k < oo such
that str(f) < kforall f e X,, andn > 0.
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Other Examples/Theorems

Take d > 2.

Definition (Ananyan-Hochster)
The strength of a polynomial f € C[xo, ..., Zs](q) is the minimal & such
that

f=gh1+ -+ grhs
with g1, ..., gk, h1, ..., hg € Clxo, ..., x,] homogeneous of degree < d.
Example/Theorem (B-Draisma-Eggermont, Kazhdan-Ziegler)
For every n, let X,, < Clz1, ..., 7,](4) be a closed subset such that:
(*) We have f ol e X, forall f € X,, and all linear maps ¢: C™ — C".
Then either X, = C[x1,...,2n]q) foralln > 0 or there is a k < oo such
that str(f) < kforall f e X,, andn > 0.
Remark: This version implies the infinite version using Lang’s theorem.
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Polynomial functors

Vec = category of finite-dimensional vector spaces over C.
Definition
A polynomial functor P assigns to V' € Vec a P(V') € Vec and to
(V,W) e Vec? a polynomial map Homg (V, W) — Homge (P(V), P(W))
such that P(idy) = idp(y forall V € Vec and P(¢ o 9) = P(y¢) o P(¢)
for all linear maps ¢: V. — W and ¢: W — U.
Examples

e Constants: V — U for U € Vec fixed.

e Linear functors: V +— U ® V for U € Vec fixed.

e Matrices: V — VRV

e Polynomials: V — SV
Remark: The class of polynomial functors is closed under direct sums,
tensor products, quotients and subfunctors. Polynomial functors have a
degree. (This can be infinite, but we don’t consider such poly functors.)
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Closed subsets of polynomial functors
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Definition
Let P, @ be polynomial functors. A polynomial transformation a:: Q — P
is a family (ay: Q(V) — P(V))vevec of polynomial maps such that
Q(V) —=P(V)
lQ(f) JP(Z)
QW) = P(W)

commutes for all linear maps ¢: V' — W.
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Definition
Let P, @ be polynomial functors. A polynomial transformation a:: Q — P
is a family (ay: Q(V) — P(V))vevec of polynomial maps such that

Q(V) —=P(V)
JQ(@ JP(@
QW) =% P(W)
commutes for all linear maps ¢: V' — W.

Definition

A closed subset X < P of a polynomial functor assigns to each V € Vec
a closed subset X (V) < P(V') such that p(¢)(X(V)) < X (W) for all
linearmaps ¢: V — W.



The dichotomy
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The dichotomy

Let P, Q be polynomial functors. Write () < P when Q4 is a quotient of
Pq) where d is maximal with Q4) # Pq)-

Theorem (B-Draisma-Eggermont-Snowden)
Let X € P be a closed subset. Then X = P or there are
Q1,...,Qr < Pand «;: Q; — P such that X < Uz 1m(az)
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The dichotomy

Let P, Q be polynomial functors. Write () < P when Q4 is a quotient of
Pq) where d is maximal with Q4) # Pq)-

Theorem (B-Draisma-Eggermont-Snowden)
Let X € P be a closed subset. Then X = P or there are
Q1,...,Qr < Pand «;: Q; — P such that X < Uz 1m(az)

Examples
e {matrices of rank < k} = {viw{ + - + vyw! | v;, w; vectors}

e {degree d polynomials that are zero on a codim k subspace} =
{1g1 + - + Lgr | deg(;) = 1,deg(g;) = d — 1}
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e All the previous Examples/Theorems

e Theorem (Draisma)
Every descending chain P 2 X; 2 X5 D ... of closed subsets
stabilizes.
Proof. Using induction on P:
Take Q1,...,Qr < P and a;: Q; — P such that X < | J; im(ay)
and pull back the chain of closed subsets along each «;. The
resulting chains all have to stabilize.
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e All the previous Examples/Theorems

e Theorem (Draisma)
Every descending chain P 2 X; 2 X5 D ... of closed subsets
stabilizes.
Proof. Using induction on P:
Take Q1,...,Qr < P and a;: Q; — P such that X < | J; im(ay)
and pull back the chain of closed subsets along each «;. The
resulting chains all have to stabilize.

e Theorem (B-Draisma-Eggermont-Snowden)
The map « — im(«) is a surjection from
{polynomial transformations into P} to

{closures of GLe-orbits in lim | P((C”)}.
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