Polynomial functors as affine spaces

Arthur Bik
University of Bern

J.w.w. Jan Draisma, Rob Eggermont and Andrew Snowden

Nonlinear Algebra Seminar Online, Zoom, 28 April 2020

Categories and functors

Definition: A category \mathcal{C} has objects $C, D \in \mathcal{C}$ and morphisms $C \rightarrow D$. You can compose morphisms and every object has an identity morphism.

Examples:

(0) The category Set consists of sets and maps.
(1) The category Vec consists of finite-dimensional vector spaces and linear maps.
(2) The category Top consists of topological spaces and continious maps.
(3) The category Vec^{k} consists of $V=\left(V_{1}, \ldots, V_{k}\right)$ with $V_{i} \in \mathrm{Vec}$ and $\ell=\left(\ell_{1}, \ldots, \ell_{k}\right): V \rightarrow W$ with $\ell_{i}: V_{i} \rightarrow W_{i}$ linear maps.

Categories and functors

Let \mathcal{C}, \mathcal{D} be categories.
Definition: A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ assigns
(1) to every object $C \in \mathcal{C}$ an object $F(C) \in \mathcal{D}$
(2) to every morphism $\ell: C \rightarrow C^{\prime}$ a morphism $F(\ell): F(C) \rightarrow F\left(C^{\prime}\right)$
such that $F\left(\ell \circ \ell^{\prime}\right)=F(\ell) \circ F\left(\ell^{\prime}\right)$ and $F\left(\mathrm{id}_{C}\right)=\mathrm{id}_{F(C)}$.

Examples:

(1) The functor For: $\operatorname{Vec} \rightarrow$ Set with $\operatorname{For}(V)=V$ and $\operatorname{For}(\ell)=\ell$.
(2) The functor $\mathrm{Zar}: \operatorname{Vec} \rightarrow$ Top with $\operatorname{Zar}(V)=V$ and $\operatorname{Zar}(\ell)=\ell$.
(3) The functor $\Delta: \operatorname{Vec} \rightarrow \operatorname{Vec}^{k}$ with $\Delta(V)=(V, \ldots, V)$ and $\Delta(\ell)=(\ell, \ldots, \ell)$.

Polynomial functors are functors

Definition: A polynomial functor $P: \mathrm{Vec}^{k} \rightarrow \mathrm{Vec}$
(1) assigns to every $V \in \operatorname{Vec}^{k}$ a vector space $P(V) \in \mathrm{Vec}$
(2) assigns to every pair $(V, W) \in \mathrm{Vec}^{k} \times \mathrm{Vec}^{k}$ a polynomial map

$$
\begin{array}{rll}
\operatorname{Mor}(V, W) & \rightarrow & \operatorname{Hom}(P(V), P(W)) \\
(\ell: V \rightarrow W) & \mapsto & (P(\ell): P(V) \rightarrow P(W))
\end{array}
$$

such that $P\left(\ell \circ \ell^{\prime}\right)=P(\ell) \circ P\left(\ell^{\prime}\right)$ and $P\left(\mathrm{id}_{V}\right)=\operatorname{id}_{P(V)}$.
Remark: For every $V \in \mathrm{Vec}^{k}$, the map

$$
\begin{aligned}
\prod_{i=1}^{k} \mathrm{GL}\left(V_{i}\right) & \rightarrow \mathrm{GL}(P(V)) \\
g=\left(g_{1}, \ldots, g_{k}\right) & \mapsto P(g)
\end{aligned}
$$

gives an action on $P(V)$.

Polynomial functors are like polynomials

What are polynomial functions $K^{k} \rightarrow K$?
Examples: Constants $v \mapsto c$ for $c \in K$ and variables
$x_{i}: K^{k} \rightarrow K,\left(v_{1}, \ldots, v_{k}\right) \mapsto v_{i}$.
Operations: Addition + and multiplication \cdot.
Answer: Polynomials are everything you can obtain from constants and variables using additions and multiplications.

Remark: Polynomials have a finite degree.

Polynomial functors are like polynomials

What are polynomial functors $\mathrm{Vec}^{k} \rightarrow$ Vec?
Examples: Constants for $U \in$ Vec defined by $V \mapsto U$ and $\ell \mapsto \mathrm{id}_{U}$ and variables T_{i} defined by $\left(V_{1}, \ldots, V_{k}\right) \mapsto V_{i}$ and $\left(\ell_{1}, \ldots, \ell_{k}\right) \mapsto \ell_{i}$.
Operations: Direct sum \oplus and tensor product \otimes defined by

$$
(Q \oplus P)(V)=Q(V) \oplus P(V) \quad \text { and } \quad(Q \otimes P)(V)=Q(V) \otimes P(V)
$$

Subfunctors and quotients: A functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$ for all V and $Q(\ell)=\left.P(\ell)\right|_{Q(V)}$ for all $\ell: V \rightarrow W$. In this case, the quotient P / Q is defined by $(P / Q)(V)=P(V) / Q(V)$.
Answer(Friedlander-Suslin, Touzé): Polynomial functors are everything you can obtain from constants and variables using direct sums, tensor products, taking subfunctors and taking quotients.

Remark: Polynomial functors have a degree. We restrict to polynomial functors with finite degree.

Polynomial functors are like polynomials

Examples:

(1) $T_{1} \oplus T_{2}$ - pairs of vectors
(2) $T \oplus T$ - pairs of vectors of the same size
(3) $T_{1} \otimes T_{2}$ - matrices
(4) $T \otimes T$ - square matrices
(5) $S^{2} \subseteq T \otimes T$ - symmetric matrices $=$ hom. degree- 2 polynomials
(6) $T_{1} \otimes \cdots \otimes T_{k}-k$-way tensors
(7) $S^{d} \subseteq T^{\otimes d}$ - symmetric d-way tensors = hom. degree- d polynomials
(8) $T_{1} \oplus T_{2} \oplus\left(T_{1} \otimes T_{2}\right)$ - (vector v, vector w, matrix A) with

$$
v w^{T}, A
$$

same size.

Polynomial functors as affine spaces

Definition: A closed subset $X \subseteq P$ assigns a closed subset

$$
X(V) \subseteq P(V)
$$

to every $V \in \mathrm{Vec}^{k}$ such that $P(\ell)(X(V)) \subseteq X(W)$ for all $\ell: V \rightarrow W$.
Example: Let $P: V \mapsto U, \ell \mapsto \mathrm{id}_{U}$ be a constant functor and $X \subseteq P$ a closed subset.
(1) $X(V)$ is a closed subset of U for all $V \in \mathrm{Vec}^{k}$.
(2) $X(V)=\operatorname{id}_{U}(X(V))=P\left(0_{V \rightarrow W}\right)(X(V)) \subseteq X(W)$ for all V, W. $\Rightarrow X(V)=X(W)$ for all V, W.
So

$$
\begin{aligned}
\{\text { closed subsets of } U\} & \rightarrow \\
Y & \mapsto \text { closed subsets of } P\} \\
& (V \mapsto Y)
\end{aligned}
$$

is a bijection.

Polynomial functors as affine spaces

Example 1: $X=\{$ linearly dependent tuples of vectors $\} \subseteq T \oplus \cdots \oplus T$.

- $X(V)=\operatorname{pr}_{V}{ }^{\oplus n}\left\{\left(v_{1}, \ldots, v_{n}, \lambda\right) \in V^{\oplus n} \times \mathbb{P}^{n-1} \mid \sum_{i=1}^{n} \lambda_{i} v_{i}=0\right\}$ is closed for all $V \in$ Vec.
- v_{1}, \ldots, v_{n} linearly dependent $\Rightarrow \ell\left(v_{1}\right), \ldots, \ell\left(v_{n}\right)$ linearly dependent.

Example 2: $X=\{$ matrices of rank $\leq r\} \subseteq T_{1} \otimes T_{2}$.

- $X(V, W)=Z\left(d^{\prime} t^{\prime} \mathrm{s}\right)$ is closed for all $(V, W) \in \mathrm{Vec}^{2}$.
- $\operatorname{rk}(A) \leq r \Rightarrow \operatorname{rk}\left(P A Q^{T}\right) \leq k$ for all matrices P, Q.

Example 3: $X=\overline{\{\text { tensors of rank } \leq r\}} \subseteq T_{1} \otimes \cdots \otimes T_{k}$.

- $X(V)$ is closed for all $V \in \mathrm{Vec}^{k}$ by construction.
- $\left(\ell_{1} \otimes \cdots \otimes \ell_{k}\right)\left(\sum_{j=1}^{r} v_{1 j} \otimes \cdots \otimes v_{k j}\right)=\sum_{j=1}^{r} \ell_{1}\left(v_{1 j}\right) \otimes \cdots \otimes \ell_{k}\left(v_{k j}\right)$

Morphisms between polynomial functors

Let P, Q be polynomial functors.
Definition: A polynomial transformation $\alpha: Q \rightarrow P$ is a family

$$
\left(\alpha_{V}: Q(V) \rightarrow P(V)\right)_{V \in \mathrm{Vec}^{k}}
$$

of polynomial maps such that

$$
\begin{aligned}
& Q(V) \xrightarrow{\alpha_{V}} P(V) \\
& \underset{\downarrow}{\mid} \underset{\sim}{\mid} P(\ell) \\
& Q(W) \xrightarrow{\alpha_{W}} P(W)
\end{aligned}
$$

commutes for all $\ell: V \rightarrow W$.

Morphisms between polynomial functors

Example 1: $\alpha: K^{(n-1) \times n} \oplus T^{\oplus(n-1)} \rightarrow T^{\oplus n}$ defined by

$$
\alpha_{V}\left(A, v_{1}, \ldots, v_{n-1}\right)=\left(v_{1}, \ldots, v_{n-1}\right) A=:\left(w_{1}, \ldots, w_{n}\right)
$$

is a polynomial transformation since
$\alpha_{V}\left(A, \ell\left(v_{1}\right), \ldots, \ell\left(v_{n-1}\right)\right)=\left(\ell\left(v_{1}\right), \ldots, \ell\left(v_{n-1}\right)\right) A=\left(\ell\left(w_{1}\right), \ldots, \ell\left(w_{n}\right)\right)$.
Example 2: $\alpha:\left(T_{1} \oplus T_{2}\right)^{\oplus r} \rightarrow T_{1} \otimes T_{2}$ defined by

$$
\alpha_{(V, W)}\left(v_{1}, w_{1}, \ldots, v_{r}, w_{r}\right)=v_{1} w_{1}^{T}+\cdots+v_{r} w_{r}^{T}
$$

is a polynomial transformation since

$$
\alpha_{(V, W)}\left(P v_{1}, Q w_{1}, \ldots, P v_{r}, Q w_{r}\right)=P\left(v_{1} w_{1}^{T}+\cdots+v_{r} w_{r}^{T}\right) Q^{T} .
$$

Example 3: $\alpha:\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{\oplus r} \rightarrow T_{1} \otimes \cdots \otimes T_{k}$ defined by

$$
\alpha_{(V, W)}\left(v_{11}, \ldots, v_{k r}\right)=\sum_{j=1}^{r} v_{1 j} \otimes \cdots \otimes v_{k j}
$$

is a polynomial transformation.

Closed subsets vs polynomial transformations

Example 1: dim $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is the minimal r such that $\left(v_{1}, \ldots, v_{n}\right)$ is in the image of $\alpha: K^{r \times n} \oplus T^{\oplus r} \rightarrow T^{\oplus n}$ defined by

$$
\alpha_{V}\left(A, v_{1}, \ldots, v_{r}\right)=\left(v_{1}, \ldots, v_{r}\right) A
$$

Example 2: $\operatorname{rk}(A)$ is the minimal r such that A is in the image of $\alpha:\left(T_{1} \oplus T_{2}\right)^{\oplus r} \rightarrow T_{1} \otimes T_{2}$ defined by

$$
\alpha_{(V, W)}\left(v_{1}, w_{1}, \ldots, v_{r}, w_{r}\right)=v_{1} w_{1}^{T}+\cdots+v_{r} w_{r}^{T} .
$$

Example 3: $\mathrm{rk}(t)$ is the minimal r such that t is in the image of $\alpha:\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{\oplus r} \rightarrow T_{1} \otimes \cdots \otimes T_{k}$ defined by

$$
\alpha_{(V, W)}\left(v_{11}, \ldots, v_{k r}\right)=\sum_{j=1}^{r} v_{1 j} \otimes \cdots \otimes v_{k j} .
$$

Closed subsets vs polynomial transformations

Let P, Q be polynomial functors.
Write $Q \prec P$ when $Q_{(d)}=P_{(d)} / P^{\prime}$ for $d=\max \left\{e>0 \mid Q_{(e)} \not \approx P_{(e)}\right\}$.

Examples

(1) $K^{(n-1) \times n} \oplus T^{\oplus(n-1)} \prec T^{\oplus n}$
(2) $\left(T_{1} \oplus T_{2}\right)^{\oplus r} \prec T_{1} \otimes T_{2}$
(3) $\left(T_{1} \oplus \cdots \oplus T_{k}\right)^{\oplus r} \prec T_{1} \otimes \cdots \otimes T_{k}$

Dichotomy Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq P$ be a closed subset. Then

- $X=P$ or
- there are polynomial functors $Q_{1}, \ldots, Q_{k} \prec P$ and $\alpha_{i}: K^{n_{i}} \oplus Q_{i} \rightarrow P$ such that $X \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$.

Applications

Theorem (Draisma)

Every descending chain $P \supsetneq X_{1} \supseteq X_{2} \supseteq \ldots$ of closed subsets stabilizes.
Proof using induction on P. Take $Q_{i} \prec P$ and $\alpha_{i}: K^{n+i} \oplus Q_{i} \rightarrow P$ such that $X_{1} \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$ and pull back the chain of closed subsets along each α_{i}. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq Q$ be a constructible subset and let $\alpha: Q \rightarrow P$ be a morphism.
Then $\alpha(X)$ is constructible.
More analogues from finite-dimensional affine algebraic geometry?
Thank you for your attention!

References

R Bik, Strength and Noetherianity for infinite Tensors, PhD thesis, https://mathsites.unibe.ch/bik/thesis.pdf.
Bik, Draisma, Eggermont, Polynomials and tensors of bounded strength, Commun. Contemp. Math. 21 (2019), no. 7, 1850062.
Bik, Draisma, Eggermont, Snowden, The geometry of polynomial representations, in preparation.
Draisma, Topological Noetherianity of polynomial functors, J. Am. Math. Soc. 32(3), 691-707, 2019.
Friedlander, Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, pp. 209-270.
Touzé, Foncteurs strictement polynomiaux et applications, Habilitation Thesis, 2014.

