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Categories and functors

Definition: A category C has objects C,D ∈ C and morphisms C → D.
You can compose morphisms and every object has an identity morphism.

Examples:
(0) The category Set consists of sets and maps.

(1) The category Vec consists of finite-dimensional vector spaces and
linear maps.

(2) The category Top consists of topological spaces and continious
maps.

(3) The category Veck consists of V = (V1, . . . , Vk) with Vi ∈ Vec and
` = (`1, . . . , `k) : V →W with `i : Vi →Wi linear maps.



Categories and functors

Let C,D be categories.

Definition: A functor F : C → D assigns

(1) to every object C ∈ C an object F (C) ∈ D
(2) to every morphism ` : C → C ′ a morphism F (`) : F (C)→ F (C ′)

such that F (` ◦ `′) = F (`) ◦ F (`′) and F (idC) = idF (C).

Examples:
(1) The functor For: Vec→ Set with For(V ) = V and For(`) = `.

(2) The functor Zar: Vec→ Top with Zar(V ) = V and Zar(`) = `.

(3) The functor ∆: Vec→ Veck with ∆(V ) = (V, . . . , V )
and ∆(`) = (`, . . . , `).



Polynomial functors are functors

Definition: A polynomial functor P : Veck → Vec

(1) assigns to every V ∈ Veck a vector space P (V ) ∈ Vec

(2) assigns to every pair (V,W ) ∈ Veck ×Veck a polynomial map

Mor(V,W ) → Hom(P (V ), P (W ))

(` : V →W ) 7→ (P (`) : P (V )→ P (W ))

such that P (` ◦ `′) = P (`) ◦ P (`′) and P (idV ) = idP (V ).

Remark: For every V ∈ Veck, the map∏k
i=1 GL(Vi) → GL(P (V ))

g = (g1, . . . , gk) 7→ P (g)

gives an action on P (V ).



Polynomial functors are like polynomials

What are polynomial functions Kk → K?

Examples: Constants v 7→ c for c ∈ K and variables
xi : K

k → K, (v1, . . . , vk) 7→ vi.

Operations: Addition + and multiplication ·.

Answer: Polynomials are everything you can obtain from constants and
variables using additions and multiplications.

Remark: Polynomials have a finite degree.



Polynomial functors are like polynomials

What are polynomial functors Veck → Vec?

Examples: Constants for U ∈ Vec defined by V 7→ U and ` 7→ idU and
variables Ti defined by (V1, . . . , Vk) 7→ Vi and (`1, . . . , `k) 7→ `i.

Operations: Direct sum ⊕ and tensor product ⊗ defined by
(Q⊕ P )(V ) = Q(V )⊕ P (V ) and (Q⊗ P )(V ) = Q(V )⊗ P (V )

Subfunctors and quotients: A functor Q is a subfunctor of P when
Q(V ) ⊆ P (V ) for all V and Q(`) = P (`)|Q(V ) for all ` : V →W . In this
case, the quotient P/Q is defined by (P/Q)(V ) = P (V )/Q(V ).

Answer(Friedlander-Suslin, Touzé): Polynomial functors are everything
you can obtain from constants and variables using direct sums, tensor
products, taking subfunctors and taking quotients.

Remark: Polynomial functors have a degree. We restrict to polynomial
functors with finite degree.



Polynomial functors are like polynomials

Examples:
(1) T1 ⊕ T2 – pairs of vectors
(2) T ⊕ T – pairs of vectors of the same size
(3) T1 ⊗ T2 – matrices
(4) T ⊗ T – square matrices
(5) S2 ⊆ T ⊗ T – symmetric matrices = hom. degree-2 polynomials
(6) T1 ⊗ · · · ⊗ Tk – k-way tensors
(7) Sd ⊆ T⊗d – symmetric d-way tensors = hom. degree-d polynomials
(8) T1 ⊕ T2 ⊕ (T1 ⊗ T2) – (vector v, vector w, matrix A) with

vwT , A

same size.



Polynomial functors as affine spaces

Definition: A closed subset X ⊆ P assigns a closed subset
X(V ) ⊆ P (V )

to every V ∈ Veck such that P (`)(X(V )) ⊆ X(W ) for all ` : V →W .

Example: Let P : V 7→ U, ` 7→ idU be a constant functor and X ⊆ P a
closed subset.

(1) X(V ) is a closed subset of U for all V ∈ Veck.

(2) X(V ) = idU (X(V )) = P (0V→W )(X(V )) ⊆ X(W ) for all V,W .
⇒ X(V ) = X(W ) for all V,W .

So
{closed subsets of U} → {closed subsets of P}

Y 7→ (V 7→ Y )

is a bijection.



Polynomial functors as affine spaces

Example 1: X = {linearly dependent tuples of vectors} ⊆ T ⊕ · · · ⊕ T .

• X(V ) = prV ⊕n{(v1, . . . , vn, λ) ∈ V ⊕n × Pn−1 |
∑n

i=1 λivi = 0} is
closed for all V ∈ Vec.

• v1, . . . , vn linearly dependent⇒ `(v1), . . . , `(vn) linearly dependent.

Example 2: X = {matrices of rank ≤ r} ⊆ T1 ⊗ T2.

• X(V,W ) = Z(det′s) is closed for all (V,W ) ∈ Vec2.

• rk(A) ≤ r ⇒ rk(PAQT ) ≤ k for all matrices P,Q.

Example 3: X = {tensors of rank ≤ r} ⊆ T1 ⊗ · · · ⊗ Tk.

• X(V ) is closed for all V ∈ Veck by construction.

• (`1⊗ · · · ⊗ `k)(
∑r

j=1 v1j ⊗ · · · ⊗ vkj) =
∑r

j=1 `1(v1j)⊗ · · · ⊗ `k(vkj)



Morphisms between polynomial functors

Let P,Q be polynomial functors.

Definition: A polynomial transformation α : Q→ P is a family

(αV : Q(V )→ P (V ))V ∈Veck

of polynomial maps such that

Q(V )

Q(`)
��

αV // P (V )

P (`)

��

Q(W )
αW // P (W )

commutes for all ` : V →W .



Morphisms between polynomial functors

Example 1: α : K(n−1)×n ⊕ T⊕(n−1) → T⊕n defined by
αV (A, v1, . . . , vn−1) = (v1, . . . , vn−1)A =: (w1, . . . , wn)

is a polynomial transformation since
αV (A, `(v1), . . . , `(vn−1)) = (`(v1), . . . , `(vn−1))A = (`(w1), . . . , `(wn)).

Example 2: α : (T1 ⊕ T2)⊕r → T1 ⊗ T2 defined by
α(V,W )(v1, w1, . . . , vr, wr) = v1w

T
1 + · · ·+ vrw

T
r

is a polynomial transformation since
α(V,W )(Pv1, Qw1, . . . , Pvr, Qwr) = P (v1w

T
1 + · · ·+ vrw

T
r )QT .

Example 3: α : (T1 ⊕ · · · ⊕ Tk)⊕r → T1 ⊗ · · · ⊗ Tk defined by
α(V,W )(v11, . . . , vkr) =

∑r
j=1v1j ⊗ · · · ⊗ vkj

is a polynomial transformation.



Closed subsets vs polynomial transformations

Example 1: dim span{v1, . . . , vn} is the minimal r such that (v1, . . . , vn)
is in the image of α : Kr×n ⊕ T⊕r → T⊕n defined by

αV (A, v1, . . . , vr) = (v1, . . . , vr)A.

Example 2: rk(A) is the minimal r such that A is in the image of
α : (T1 ⊕ T2)⊕r → T1 ⊗ T2 defined by

α(V,W )(v1, w1, . . . , vr, wr) = v1w
T
1 + · · ·+ vrw

T
r .

Example 3: rk(t) is the minimal r such that t is in the image of
α : (T1 ⊕ · · · ⊕ Tk)⊕r → T1 ⊗ · · · ⊗ Tk defined by

α(V,W )(v11, . . . , vkr) =
∑r

j=1v1j ⊗ · · · ⊗ vkj .



Closed subsets vs polynomial transformations

Let P,Q be polynomial functors.

Write Q ≺ P when Q(d) = P(d)/P
′ for d = max{e > 0 | Q(e) 6∼= P(e)}.

Examples
(1) K(n−1)×n ⊕ T⊕(n−1) ≺ T⊕n
(2) (T1 ⊕ T2)⊕r ≺ T1 ⊗ T2
(3) (T1 ⊕ · · · ⊕ Tk)⊕r ≺ T1 ⊗ · · · ⊗ Tk
Dichotomy Theorem (B-Draisma-Eggermont-Snowden)
Let X ⊆ P be a closed subset. Then

• X = P or

• there are polynomial functors Q1, . . . , Qk ≺ P and
αi : K

ni ⊕Qi → P such that X ⊆
⋃
i im(αi).



Applications

Theorem (Draisma)
Every descending chain P ) X1 ⊇ X2 ⊇ ... of closed subsets stabilizes.

Proof using induction on P . Take Qi ≺ P and αi : Kn+i ⊕Qi → P
such that X1 ⊆

⋃
i im(αi) and pull back the chain of closed subsets

along each αi. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let X ⊆ Q be a constructible subset and let α : Q→ P be a morphism.
Then α(X) is constructible.

More analogues from finite-dimensional affine algebraic geometry?

Thank you for your attention!
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