Polynomial functors as affine spaces

Arthur Bik University of Bern

J.w.w. Jan Draisma, Rob Eggermont and Andrew Snowden

Nonlinear Algebra Seminar Online, Zoom, 28 April 2020

Definition: A category C has objects $C, D \in C$ and morphisms $C \to D$. You can compose morphisms and every object has an identity morphism.

Examples:

- (0) The category Set consists of sets and maps.
- (1) The category ${\rm Vec}$ consists of finite-dimensional vector spaces and linear maps.
- (2) The category Top consists of topological spaces and continious maps.
- (3) The category Vec^k consists of $V = (V_1, \ldots, V_k)$ with $V_i \in \operatorname{Vec}$ and $\ell = (\ell_1, \ldots, \ell_k) \colon V \to W$ with $\ell_i \colon V_i \to W_i$ linear maps.

Categories and functors

UNIVERSITÄT BERN

Let \mathcal{C}, \mathcal{D} be categories.

Definition: A functor $F: \mathcal{C} \to \mathcal{D}$ assigns

- (1) to every object $C \in \mathcal{C}$ an object $F(C) \in \mathcal{D}$
- (2) to every morphism $\ell \colon C \to C'$ a morphism $F(\ell) \colon F(C) \to F(C')$ such that $F(\ell \circ \ell') = F(\ell) \circ F(\ell')$ and $F(id_C) = id_{F(C)}$.

Examples:

- (1) The functor For: $\operatorname{Vec} \to \operatorname{Set}$ with $\operatorname{For}(V) = V$ and $\operatorname{For}(\ell) = \ell$.
- (2) The functor Zar : $\operatorname{Vec} \to \operatorname{Top}$ with $\operatorname{Zar}(V) = V$ and $\operatorname{Zar}(\ell) = \ell$.
- (3) The functor $\Delta \colon \operatorname{Vec} \to \operatorname{Vec}^k$ with $\Delta(V) = (V, \ldots, V)$ and $\Delta(\ell) = (\ell, \ldots, \ell)$.

Polynomial functors are functors

UNIVERSITÄT BERN

Definition: A polynomial functor $P: \operatorname{Vec}^k \to \operatorname{Vec}$

- (1) assigns to every $V \in \operatorname{Vec}^k$ a vector space $P(V) \in \operatorname{Vec}$
- (2) assigns to every pair $(V, W) \in \operatorname{Vec}^k \times \operatorname{Vec}^k$ a polynomial map

 $\operatorname{Mor}(V, W) \to \operatorname{Hom}(P(V), P(W))$

 $(\ell \colon V \to W) \quad \mapsto \quad (P(\ell) \colon P(V) \to P(W))$

such that $P(\ell \circ \ell') = P(\ell) \circ P(\ell')$ and $P(\mathrm{id}_V) = \mathrm{id}_{P(V)}$.

Remark: For every $V \in \text{Vec}^k$, the map

$$\prod_{i=1}^{k} \operatorname{GL}(V_i) \to \operatorname{GL}(P(V))$$
$$g = (g_1, \dots, g_k) \mapsto P(g)$$

gives an action on P(V).

Polynomial functors are like polynomials

What are polynomial functions $K^k \to K$?

Examples: Constants $v \mapsto c$ for $c \in K$ and variables $x_i \colon K^k \to K, (v_1, \ldots, v_k) \mapsto v_i$.

Operations: Addition + and multiplication .

Answer: Polynomials are everything you can obtain from constants and variables using additions and multiplications.

Remark: Polynomials have a finite degree.

Polynomial functors are like polynomials

What are polynomial functors $\operatorname{Vec}^k \to \operatorname{Vec}$?

Examples: Constants for $U \in \text{Vec}$ defined by $V \mapsto U$ and $\ell \mapsto \text{id}_U$ and variables T_i defined by $(V_1, \ldots, V_k) \mapsto V_i$ and $(\ell_1, \ldots, \ell_k) \mapsto \ell_i$.

Operations: Direct sum \oplus and tensor product \otimes defined by $(Q \oplus P)(V) = Q(V) \oplus P(V)$ and $(Q \otimes P)(V) = Q(V) \otimes P(V)$

Subfunctors and quotients: A functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$ for all V and $Q(\ell) = P(\ell)|_{Q(V)}$ for all $\ell: V \to W$. In this case, the quotient P/Q is defined by (P/Q)(V) = P(V)/Q(V).

Answer(Friedlander-Suslin, Touzé): Polynomial functors are everything you can obtain from constants and variables using direct sums, tensor products, taking subfunctors and taking quotients.

Remark: Polynomial functors have a degree. We restrict to polynomial functors with finite degree.

Polynomial functors are like polynomials

Examples:

- (1) $T_1 \oplus T_2$ pairs of vectors
- (2) $T \oplus T$ pairs of vectors of the same size
- (3) $T_1 \otimes T_2$ matrices
- (4) $T \otimes T$ square matrices
- (5) $S^2 \subseteq T \otimes T$ symmetric matrices = hom. degree-2 polynomials
- (6) $T_1 \otimes \cdots \otimes T_k k$ -way tensors
- (7) $S^d \subseteq T^{\otimes d}$ symmetric *d*-way tensors = hom. degree-*d* polynomials
- (8) $T_1 \oplus T_2 \oplus (T_1 \otimes T_2)$ (vector v, vector w, matrix A) with

 vw^T, A

same size.

Polynomial functors as affine spaces

Definition: A closed subset $X \subseteq P$ assigns a closed subset

$$X(V) \subseteq P(V)$$

to every $V \in \operatorname{Vec}^k$ such that $P(\ell)(X(V)) \subseteq X(W)$ for all $\ell \colon V \to W$.

Example: Let $P: V \mapsto U, \ell \mapsto \mathrm{id}_U$ be a constant functor and $X \subseteq P$ a closed subset.

(1) X(V) is a closed subset of U for all $V \in \text{Vec}^k$.

(2) $X(V) = id_U(X(V)) = P(0_{V \to W})(X(V)) \subseteq X(W)$ for all V, W. $\Rightarrow X(V) = X(W)$ for all V, W.

Y

So

$$\{ \text{closed subsets of } U \} \rightarrow \{ \text{closed subsets of } P \}$$

$$Y \mapsto (V \mapsto Y)$$

is a bijection.

Polynomial functors as affine spaces

Example 1: $X = \{ \text{linearly dependent tuples of vectors} \} \subseteq T \oplus \cdots \oplus T.$

- $X(V) = \operatorname{pr}_{V^{\oplus n}} \{ (v_1, \dots, v_n, \lambda) \in V^{\oplus n} \times \mathbb{P}^{n-1} \mid \sum_{i=1}^n \lambda_i v_i = 0 \}$ is closed for all $V \in \operatorname{Vec}$.
- v_1, \ldots, v_n linearly dependent $\Rightarrow \ell(v_1), \ldots, \ell(v_n)$ linearly dependent.

Example 2: $X = \{ \text{matrices of rank} \le r \} \subseteq T_1 \otimes T_2.$

- X(V,W) = Z(det's) is closed for all $(V,W) \in Vec^2$.
- $\operatorname{rk}(A) \leq r \Rightarrow \operatorname{rk}(PAQ^T) \leq k$ for all matrices P, Q.

Example 3: $X = \overline{\{\text{tensors of rank} \le r\}} \subseteq T_1 \otimes \cdots \otimes T_k$.

- X(V) is closed for all $V \in \text{Vec}^k$ by construction.
- $(\ell_1 \otimes \cdots \otimes \ell_k)(\sum_{j=1}^r v_{1j} \otimes \cdots \otimes v_{kj}) = \sum_{j=1}^r \ell_1(v_{1j}) \otimes \cdots \otimes \ell_k(v_{kj})$

Morphisms between polynomial functors

Let P, Q be polynomial functors.

Definition: A polynomial transformation $\alpha \colon Q \to P$ is a family

$$(\alpha_V \colon Q(V) \to P(V))_{V \in \operatorname{Vec}^k}$$

of polynomial maps such that

$$Q(V) \xrightarrow{\alpha_V} P(V)$$

$$\downarrow Q(\ell) \qquad \qquad \downarrow P(\ell)$$

$$Q(W) \xrightarrow{\alpha_W} P(W)$$

commutes for all $\ell \colon V \to W$.

Morphisms between polynomial functors

Example 1: α : $K^{(n-1)\times n} \oplus T^{\oplus (n-1)} \to T^{\oplus n}$ defined by

$$\alpha_V(A, v_1, \dots, v_{n-1}) = (v_1, \dots, v_{n-1})A =: (w_1, \dots, w_n)$$

is a polynomial transformation since $\alpha_V(A, \ell(v_1), \dots, \ell(v_{n-1})) = (\ell(v_1), \dots, \ell(v_{n-1}))A = (\ell(w_1), \dots, \ell(w_n)).$

Example 2: $\alpha : (T_1 \oplus T_2)^{\oplus r} \to T_1 \otimes T_2$ defined by $\alpha_{(V,W)}(v_1, w_1, \dots, v_r, w_r) = v_1 w_1^T + \dots + v_r w_r^T$

is a polynomial transformation since

$$\alpha_{(V,W)}(Pv_1, Qw_1, \dots, Pv_r, Qw_r) = P(v_1w_1^T + \dots + v_rw_r^T)Q^T.$$

Example 3: $\alpha : (T_1 \oplus \cdots \oplus T_k)^{\oplus r} \to T_1 \otimes \cdots \otimes T_k$ defined by $\alpha_{(V,W)}(v_{11}, \dots, v_{kr}) = \sum_{j=1}^r v_{1j} \otimes \cdots \otimes v_{kj}$

is a polynomial transformation.

Closed subsets vs polynomial transformations

b

Example 1: dim span{ v_1, \ldots, v_n } is the minimal r such that (v_1, \ldots, v_n) is in the image of $\alpha \colon K^{r \times n} \oplus T^{\oplus r} \to T^{\oplus n}$ defined by

 $\alpha_V(A, v_1, \dots, v_r) = (v_1, \dots, v_r)A.$

Example 2: $\operatorname{rk}(A)$ is the minimal r such that A is in the image of α : $(T_1 \oplus T_2)^{\oplus r} \to T_1 \otimes T_2$ defined by $\alpha_{(V,W)}(v_1, w_1, \dots, v_r, w_r) = v_1 w_1^T + \dots + v_r w_r^T$.

Example 3: $\operatorname{rk}(t)$ is the minimal r such that t is in the image of $\alpha : (T_1 \oplus \cdots \oplus T_k)^{\oplus r} \to T_1 \otimes \cdots \otimes T_k$ defined by $\alpha_{(V,W)}(v_{11}, \ldots, v_{kr}) = \sum_{i=1}^r v_{1i} \otimes \cdots \otimes v_{ki}.$

Closed subsets vs polynomial transformations

b

Let P, Q be polynomial functors.

Write $Q \prec P$ when $Q_{(d)} = P_{(d)}/P'$ for $d = \max\{e > 0 \mid Q_{(e)} \not\cong P_{(e)}\}$.

Examples

(1) $K^{(n-1)\times n} \oplus T^{\oplus (n-1)} \prec T^{\oplus n}$ (2) $(T_1 \oplus T_2)^{\oplus r} \prec T_1 \otimes T_2$ (3) $(T_1 \oplus \cdots \oplus T_k)^{\oplus r} \prec T_1 \otimes \cdots \otimes T_k$

Dichotomy Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then

- X = P or
- there are polynomial functors $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon K^{n_i} \oplus Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

Applications

UNIVERSITÄT BERN

Theorem (Draisma) Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots$ of closed subsets stabilizes. **Proof using induction on** P. Take $Q_i \prec P$ and $\alpha_i \colon K^{n+i} \oplus Q_i \rightarrow P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq Q$ be a constructible subset and let $\alpha : Q \to P$ be a morphism. Then $\alpha(X)$ is constructible.

More analogues from finite-dimensional affine algebraic geometry?

Thank you for your attention!

References

- Bik, *Strength and Noetherianity for infinite Tensors*, PhD thesis, https://mathsites.unibe.ch/bik/thesis.pdf.
- Bik, Draisma, Eggermont, *Polynomials and tensors of bounded strength*, Commun. Contemp. Math. 21 (2019), no. 7, 1850062.
- Bik, Draisma, Eggermont, Snowden, *The geometry of polynomial representations*, in preparation.
- Draisma, *Topological Noetherianity of polynomial functors*, J. Am. Math. Soc. 32(3), 691–707, 2019.
- Friedlander, Suslin, *Cohomology of finite group schemes over a field*, Invent. Math. 127 (1997), no. 2, pp. 209–270.
- Touzé, Foncteurs strictement polynomiaux et applications, Habilitation Thesis, 2014.