Curves with a rational MLE and chipfiring games

Arthur Bik

Seminar on Nonlinear Algebra

23 March 2022

Discrete statistical models

Let Δ_{n} be $\left\{\left(p_{0}, p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{>0}^{n+1} \mid p_{0}+p_{1}+\ldots+p_{n}=1\right\}$.

Definition

A discrete statistical model is a subset \mathcal{M} of Δ_{n}. The points of \mathcal{M} represent probability distributions on the set $\{0,1, \ldots, n\}$.

Definition

The maximum likelihood estimator (MLE) of \mathcal{M} is the function

$$
\Phi: \Delta_{n} \rightarrow \mathcal{M}
$$

such that $\left(\hat{p}_{0}, \hat{p}_{1}, \ldots, \hat{p}_{n}\right)=\Phi\left(u_{0}, u_{n}, \ldots, u_{n}\right)$ maximizes over \mathcal{M} the chance that distribution $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ is observed from an experiment.

Discrete statistical models

Example

Flip a biased coin. When H flip again. Record the outcomes.

$$
\mathcal{M}=\left\{\left(p^{2}, p(1-p), 1-p\right) \mid p \in(0,1)\right\}
$$

Discrete statistical models

$$
\mathcal{M}=\left\{\left(p^{2}, p(1-p), 1-p\right) \mid p \in(0,1)\right\}
$$

Assume that $a+b+c$ experiments results in outcomes:

$$
a \times \mathrm{HH}, \quad b \times \mathrm{HT}, \quad c \times \mathrm{T}
$$

What value of p maximizes the following?

$$
\begin{gathered}
\binom{a+b+c}{a, b, c} \cdot\left(p^{2}\right)^{a} \cdot(p(1-p))^{b} \cdot(1-p)^{c} \\
\rightsquigarrow(2 a+b) / \hat{p}-(b+2 c) /(1-\hat{p})=0 \Rightarrow \\
\hat{p}=\frac{2 a+b}{2 a+2 b+c} \text { and } 1-\hat{p}=\frac{b+c}{2 a+2 b+c}
\end{gathered}
$$

Discrete statistical models

Example

Flip a biased coin. When H flip again. Record the outcomes.

$$
\Phi(a, b, c)=\left(\left(\frac{2 a+b}{2 a+2 b+c}\right)^{2}, \frac{2 a+b}{2 a+2 b+c} \cdot \frac{b+c}{2 a+2 b+c}, \frac{b+c}{2 a+2 b+c}\right)
$$

Discrete statistical models

Example

Flip a biased coin twice. When same outcomes flip again.
Record HHH, TTT or other.

$$
\mathcal{M}=\left\{\left(p^{3}, 3 p(1-p),(1-p)^{3}\right) \mid p \in(0,1)\right\} \text { and } \hat{p}=\frac{3 a+b}{3 a+2 b+3 c}
$$

Discrete statistical models with a rational MLE

Theorem (Duarte, Marigliano, Sturmfels)

The following are equivalent:
(1) The model \mathcal{M} has a rational MLE.
(2) There exists a Horn pair (H, λ) such that \mathcal{M} is the image of the Horn map.
(3) There exists a discriminantal triple (A, Δ, \mathbf{m}) such that \mathcal{M} is the image of the associated map.

Question (Duarte, Marigliano, Sturmfels)
Can models with a rational MLE be classified?
Today (with Orlando Marigliano)
We focus on curves, i.e. models of dimension 1.

Curves with a rational MLE

Theorem

Let $\mathcal{M} \subseteq \Delta_{n}$ be a model of dimension 1 with a rational MLE. Then
$\mathcal{M}=\left\{\left(\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}, \lambda_{1} t^{i_{1}}(1-t)^{j_{1}}, \ldots, \lambda_{n} t^{i_{n}}(1-t)^{j_{n}}\right) \mid t \in(0,1)\right\}$
for some $\lambda_{\nu} \in \mathbb{R}_{>0}$ and monomials $t^{i_{\nu}}(1-t)^{j_{\nu}}$ in $t, 1-t$ such that

$$
\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}+\lambda_{1} t^{i_{1}}(1-t)^{j_{1}}+\ldots+\lambda_{n} t^{i_{n}}(1-t)^{j_{n}}=1
$$

as polynomials.

Proof.

(\Leftarrow) Compute the MLE.
(\Rightarrow) Models with rational MLE are unirational.

Curves with a rational MLE

Model consists of data ($\lambda_{\nu}, i_{\nu}, j_{\nu}$) for $\nu=0, \ldots, n$ such that

$$
\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}+\lambda_{1} t^{i_{1}}(1-t)^{j_{1}}+\ldots+\lambda_{n} t^{i_{n}}(1-t)^{j_{n}}=1 .
$$

Reductions

(1) If $\left(i_{\nu}, j_{\nu}\right)=(0,0)$, discard $\left(\lambda_{\nu}, i_{\nu}, j_{\nu}\right)$ and scale by $\left(1-\lambda_{n} u\right)^{-1}$.
(2) If $\left(i_{\nu}, j_{\nu}\right)=\left(i_{\nu^{\prime}}, j_{\nu^{\prime}}\right)$, combine them (by adding λ_{ν} and $\left.\lambda_{\nu^{\prime}}\right)$.

We assume the model is reduced, i.e. all $\left(i_{\nu}, j_{\nu}\right)$ distinct from $(0,0)$ and from each other.

Proposition

The data $\left(\lambda_{\nu}, i_{\nu}, j_{\nu}\right)$ for $\nu=0, \ldots, n$ form a model \Leftrightarrow
$-1+\lambda_{0} x^{i_{0}} y^{j_{0}}+\lambda_{1} x^{i_{1}} y^{j_{1}}+\ldots+\lambda_{n} x^{i_{n}} y^{j_{n}}=(x+y-1) \sum_{i, j=0}^{\infty} f_{i, j} x^{i} y^{j}$
for some $f_{i, j} \in \mathbb{R}$ almost all zero.

Chipsplitting games

Let $G=(V, E)$ be a (fixed) directed graph without loops.
Let $v_{0} \in V$ have at least 1 outgoing edge $\left(v_{0}, v\right) \in E$.

Definition

(1) A chip configuration is a tuple $w=\left(w_{v}\right)_{v \in V} \in \mathbb{Z}^{V}$.
(2) A chipsplitting move at v_{0} sends w to \widetilde{w} defined by

$$
\widetilde{w}_{v}=\left\{\begin{array}{cl}
w_{v}-1 & \text { if } v=v_{0} \\
w_{v}+1 & \text { if }\left(v_{0}, v\right) \in E \\
w_{v} & \text { otherwise }
\end{array}\right.
$$

An unsplitting move at v_{0} is its inverse.
(3) The initial configuration w is given by $w_{v}=0$ for all $v \in V$.
(4) A chipsplitting game f is a finite sequence of moves.
(5) The outcome of f is the result of applying all moves starting from the initial configuration.

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{llllll}
0 & & & & & \\
0 & 0 & & & & \\
0 & 0 & 0 & & & \\
0 & 0 & 0 & 0 & & \\
0 & 0 & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{ccccccc}
0 & & & & & \\
0 & 0 & & & & \\
0 & 0 & 0 & & & \\
0 & 0 & 0 & 0 & & \\
1 & 0 & 0 & 0 & 0 & \\
-1 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{cccccc}
0 & & & & & \\
0 & 0 & & & & \\
0 & 0 & 0 & & & \\
1 & 0 & 0 & 0 & & \\
0 & 1 & 0 & 0 & 0 & \\
-1 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{cccccc}
0 & & & & & \\
0 & 0 & & & & \\
0 & 0 & 0 & & & \\
1 & 0 & 0 & 0 & & \\
0 & 2 & 0 & 0 & 0 & \\
-1 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{cccccc}
0 & & & & & \\
0 & 0 & & & & \\
1 & 0 & 0 & & & \\
0 & 1 & 0 & 0 & & \\
0 & 2 & 0 & 0 & 0 & \\
-1 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{cccccc}
0 & & & & & \\
0 & 0 & & & & \\
1 & 0 & 0 & & & \\
0 & 1 & 0 & 0 & & \\
0 & 2 & 1 & 0 & 0 & \\
-1 & 0 & 0 & 1 & 0 & 0
\end{array}
$$

Chipsplitting games

Let $d \in\{1,2,3, \ldots, \infty\}$. Define

$$
\begin{aligned}
V_{d} & :=\left\{(i, j) \in \mathbb{Z}_{\geq 0}^{2} \mid \operatorname{deg}(i, j) \leq d\right\} \\
E_{d} & :=\left\{(v, v+e) \mid v \in V_{d-1}, e \in\{(1,0),(0,1)\}\right\}
\end{aligned}
$$

where $\operatorname{deg}(i, j):=i+j$.

Example

We apply a splitting move at the red vertex.

$$
\begin{array}{cccccc}
0 & & & & & \\
0 & 0 & & & & \\
1 & 0 & 0 & & & \\
0 & 0 & 0 & 0 & & \\
0 & 3 & 0 & 0 & 0 & \\
-1 & 0 & 0 & 1 & 0 & 0
\end{array}
$$

Curves with a rational MLE as outcomes

Proposition

The data $\left(\lambda_{\nu}, i_{\nu}, j_{\nu}\right)$ for $\nu=0, \ldots, n$ form a model \Leftrightarrow
$-1+\lambda_{0} x^{i_{0}} y^{j_{0}}+\lambda_{1} x^{i_{1}} y^{j_{1}}+\ldots+\lambda_{n} x^{i_{n}} y^{j_{n}}=(x+y-1) \sum_{i, j=0}^{\infty} f_{i, j} x^{i} y^{j}$
for some $f_{i, j} \in \mathbb{R}$ almost all finite.
Assume the model is reduced and set

$$
w_{i, j}=\left\{\begin{array}{cl}
\lambda_{\nu} & \text { if }(i, j)=\left(i_{\nu}, j_{\nu}\right) \\
-1 & \text { if }(i, j)=(0,0) \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $\left(w_{i, j}\right)_{(i, j) \in V_{d}}$ is the outcome of the chipsplitting game where (i, j) is split $f_{i, j}$ times (where unsplitting moves count negatively).

Chipsplitting games

Definition

(1) A chip configuration w is valid when $w_{i, j} \geq 0$ for all $(i, j) \neq(0,0)$.
(2) The positive support of w is $\operatorname{supp}^{+}(w):=\left\{(i, j) \mid w_{i, j}>0\right\}$.
(3) The degree of w is $\operatorname{deg}(w):=\max \left\{\operatorname{deg}(i, j) \mid w_{i, j} \neq 0\right\}$.

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.
Why is the nice?

- The conjecture gives a bound of the degree of the parametrisation of a dimension-1 curve with a rational MLE.
- The conjecture shows that there are finitely many "fundamental" models in Δ_{n}, which can be used to get any other model.

Composite models

Definition

A model $\left\{\left(\lambda_{\nu}, i_{\nu}, j_{\nu}\right) \mid \nu=0, \ldots, n\right\}$ is fundamental when the λ_{ν} are unique given the i_{ν}, j_{ν}.

Composition

Let $\mu \in(0,1)$. The μ-composite of models

$$
\left\{\left(\lambda_{i, j}, i, j\right) \mid(i, j) \in S\right\}, \quad\left\{\left(\lambda_{i, j}^{\prime}, i, j\right) \mid(i, j) \in S^{\prime}\right\}
$$

is the model

$$
\left\{\left(\lambda_{i, j}+\lambda_{i, j}^{\prime}, i, j\right) \mid(i, j) \in S \cup S^{\prime}\right\}
$$

where $\lambda_{i, j}:=0$ for all $(i, j) \notin S$ and $\lambda_{i, j}^{\prime}:=0$ for all $(i, j) \notin S^{\prime}$.

Theorem

Every reduced model in Δ_{n} is a composite of $\leq n$ fundamental models (from Δ_{m} with $m<n$).

Chipsplitting games

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Why believe the conjecture?

- Computer search for low degree. $\left(\frac{1}{2}(\operatorname{deg}(w)+3) \leq \# \operatorname{supp}^{+}(w)\right)$
- Take $d=2 k+1$. Let $w=\left(w_{i, j}\right)_{(i, j) \in V_{d}} \in \mathbb{Z}^{V_{d}}$ be defined by

$$
\begin{aligned}
w_{0,0} & =-1 \\
w_{0,2 k+1} & =1 \\
w_{2 i+1, k-i} & =\frac{2 k+1}{2 i+1}\binom{k+i}{2 i}, \quad i \in\{0,1, \ldots, k\}
\end{aligned}
$$

and $w_{i, j}=0$ otherwise. Then w is a valid outcome.

$$
\operatorname{deg}(w)=2 k+1=2 \cdot(k+2)-3=2 \cdot \# \operatorname{supp}^{+}(w)-3
$$

Main results

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Main result

The conjecture holds when $\# \operatorname{supp}^{+}(w) \leq 5$.

Corollary

Let
$\mathcal{M}=\left\{\left(\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}, \lambda_{1} t^{i_{1}}(1-t)^{j_{1}}, \ldots, \lambda_{n} t^{i_{n}}(1-t)^{j_{n}}\right) \mid t \in(0,1)\right\}$
be a model with a rational MLE.
(1) If $n=1$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 1$.
(2) If $n=2$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 3$.
(3) If $n=3$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 5$.
(4) If $n=4$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 7$.

The proof

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.
We aim to prove that certain chip configurations cannot be the outcome of a chipsplitting game.

Here are the tools:
(1) Invertibility Criterium
(2) Hyperfield Criterium
(3) Hexagon Criterium
(4) a computer

Pascal equations

For $(k, \ell) \in V_{d-1}$, take $E^{(k, \ell)} \in \mathbb{Z}_{d}^{V}$ so that

$$
E_{i, j}^{(k, \ell)}=\left\{\begin{array}{cl}
1 & \text { when }(i, j) \in\{(k+1, \ell),(k, \ell+1)\} \\
-1 & \text { when }(i, j)=(k, \ell) \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $\operatorname{span}_{\mathbb{Z}}\left\{E^{(k, \ell)} \mid(k, \ell) \in V_{d-1}\right\}$ is the space of outcomes.

Definition

A Pascal equation on $\mathbb{Z}^{V_{d}}$ is a linear form

$$
\sum_{(i, j) \in V_{d}} c_{i, j} x_{i, j}
$$

such that $c_{i, j}=c_{i+1, j}+c_{i, j+1}$ for all $(i, j) \in V_{d-1}$.
We have $\{$ outcomes $\}=V$ (Pascal equations) .

The Invertibility Criterium

For $a, b \geq 0$ with $a+b=d$, define

$$
\varphi_{a, b}:=\sum_{i=0}^{a} \sum_{j=0}^{b}\binom{d-(i+j)}{a-i} x_{i, j}=\sum_{i=0}^{a} \sum_{j=0}^{b}\binom{d-(i+j)}{b-j} x_{i, j}
$$

For $w \in \mathbb{Z}^{V_{d}}$, define $\operatorname{supp}(w):=\left\{(i, j) \in V_{d} \mid w_{i, j} \neq 0\right\} \subseteq V_{d}$.

Invertibility Criterium

Let $S \subseteq V_{d}$ and $E \subseteq\left\{(a, b) \in V_{d} \mid a+b=d\right\}$ be subsets of the same size. Let $w \in \mathbb{Z}^{V_{d}}$ be an outcome. Suppose that the matrix

$$
A_{E, S}:=\left(\binom{d-(i+j)}{a-i}\right)_{a \in E,(i, j) \in S}
$$

is invertible. Then $\operatorname{supp}(w) \neq S$.

The Invertibility Criterium

How to apply it?

(1) Split into pieces.
(2) Use symmetry:

We have an action of S_{3} on $\mathbb{Z}^{V_{d}}$ given by

$$
\begin{aligned}
(12) \cdot\left(w_{i, j}\right)_{(i, j) \in V_{d}} & :=\left(w_{j, i}\right)_{(i, j) \in V_{d}} \\
(13) \cdot\left(w_{i, j}\right)_{(i, j) \in V_{d}} & =\left((-1)^{d-j} w_{d-(i+j), j}\right)_{(i, j) \in V_{d}}
\end{aligned}
$$

The Hyperfield Criterium

Definition

A hyperfield is a tuple $(H,+, \cdot, 0,1)$ where \ldots

Example (Sign hyperfield)

Take $H=\{1,0,-1\}$ with usual multiplication and

$$
s+r:=\{\operatorname{sign}(x+y) \mid x, y \in \mathbb{R}, \operatorname{sign}(x)=s, \operatorname{sign}(y)=r\}
$$

for all $s, r \in H$.
We have $0+s=s, s+s=s$ and $1+(-1)=H$.

The Hyperfield Criterium

Definition

A hyperfield is a tuple $(H,+, \cdot, 0,1)$ where

$$
-+-: H \times H \rightarrow 2^{H} \backslash\{\emptyset\}, \quad-\cdot-: H \times H \rightarrow H
$$

are symmetric maps satisfying the following relations:
(1) The tuple $(H \backslash\{0\}, \cdot, 1)$ is a group.
(2) We have $0 \cdot x=0$ and $0+x=\{x\}$ for all $x \in H$.
(3) We have $a \cdot(x+y)=(a \cdot x)+(a \cdot y)$ for all $a, x, y \in H$.
(4) For every $x \in H$ there is an unique element $-x \in H$ such that $x+(-x) \ni 0$.

A subset of H^{n} is Zariski-closed when it is of the form

$$
\left\{\left(s_{1}, \ldots, s_{n}\right) \in H^{n} \mid f_{1}\left(s_{1}, \ldots, s_{n}\right), \ldots, f_{k}\left(s_{1}, \ldots, s_{n}\right) \ni 0\right\}
$$

for some polynomials f_{1}, \ldots, f_{k} over H in variables x_{1}, \ldots, x_{n}.

The Hyperfield Criterium

Example (Sign hyperfield)

Take $H=\{1,0,-1\}$ with usual multiplication and

$$
0+s=s, \quad s+s=s, \quad 1+(-1)=H
$$

Take $f=x_{1}+x_{2}-x_{3}-x_{4}$ and $s_{1}, s_{2}, s_{3}, s_{4} \in H$. Then

$$
\begin{aligned}
f\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \ni 0 & \Leftrightarrow\left\{\begin{array}{c}
s_{1}=s_{2}=s_{3}=s_{4}=0 \\
\text { or } \\
1,-1 \in\left\{s_{1}, s_{2},-s_{3},-s_{4}\right\}
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{c}
f\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=0 \\
\text { or } \\
f\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=H
\end{array}\right.
\end{aligned}
$$

The Hyperfield Criterium

For $f=\sum_{i} c_{i} x_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, take $\operatorname{sign}(f):=\sum_{i} \operatorname{sign}\left(c_{i}\right) x_{i}$.

Hyperfield Criterium

Let $w \in \mathbb{Z}^{V_{d}}$ be an outcome and $s \in H^{V_{d}}$. Suppose that $\operatorname{sign}(\phi)$ does not vanish at s for some Pascal equation ϕ on $\mathbb{Z}^{V_{d}}$. Then $\operatorname{sign}(w) \neq s$.

How to apply it?

The Hexagon Criterium

Let $\ell_{1}, \ell_{2} \geq d^{\prime} \geq 1$ be integers such that $d^{\prime}+\ell_{1}+\ell_{2} \leq d$.
Let $w=\left(w_{i, j}\right)_{(i, j) \in V_{d}} \in \mathbb{Z}^{V_{d}}$ and write $w^{\prime}=\left(w_{i, j}\right)_{(i, j) \in V_{d^{\prime}}} \in \mathbb{Z}^{V_{d^{\prime}}}$.
Hexagon Criterium
Suppose that w^{\prime} is not an outcome and
$\operatorname{supp}(w) \subseteq V_{d^{\prime}} \cup\left\{(i, j) \in V_{d} \mid j>d-\ell_{1}\right\} \cup\left\{(i, j) \in V_{d} \mid i>d-\ell_{2}\right\}$
holds. Then w is not an outcome.
How to apply it?

Main results

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Main result

The conjecture holds when $\# \operatorname{supp}^{+}(w) \leq 5$.

Corollary

Let
$\mathcal{M}=\left\{\left(\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}, \lambda_{1} t^{i_{1}}(1-t)^{j_{1}}, \ldots, \lambda_{n} t^{i_{n}}(1-t)^{j_{n}}\right) \mid t \in(0,1)\right\}$
be a model with a rational MLE.
(1) If $n=1$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 1$.
(2) If $n=2$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 3$.
(3) If $n=3$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 5$.
(4) If $n=4$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 7$.

Main results

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Main result

The conjecture holds when \# supp ${ }^{+}(w) \leq 5$.

Corollary

Let
$\mathcal{M}=\left\{\left(\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}, \lambda_{1} t^{i_{1}}(1-t)^{j_{1}}, \ldots, \lambda_{n} t^{i_{n}}(1-t)^{j_{n}}\right) \mid t \in(0,1)\right\}$
be a model with a rational MLE.
(1) If $n=1$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 1$. \Leftarrow Invertibility Criterium
(2) If $n=2$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 3$. \Leftarrow Invertibility Criterium
(3) If $n=3$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 5$.
(4) If $n=4$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 7$.

Main results

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Main result

The conjecture holds when \# supp ${ }^{+}(w) \leq 5$.

Corollary

Let

$$
\mathcal{M}=\left\{\left(\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}, \lambda_{1} t^{i_{1}}(1-t)^{j_{1}}, \ldots, \lambda_{n} t^{i_{n}}(1-t)^{j_{n}}\right) \mid t \in(0,1)\right\}
$$

be a model with a rational MLE.
(1) If $n=1$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 1$. \Leftarrow Invertibility Criterium
(2) If $n=2$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 3$. \Leftarrow Invertibility Criterium
(3) If $n=3$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 5$. \Leftarrow Hyperfield Criterium
(4) If $n=4$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 7$.

Main results

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Main result

The conjecture holds when \# supp ${ }^{+}(w) \leq 5$.

Corollary

Let

$$
\mathcal{M}=\left\{\left(\lambda_{0} t^{i_{0}}(1-t)^{j_{0}}, \lambda_{1} t^{i_{1}}(1-t)^{j_{1}}, \ldots, \lambda_{n} t^{i_{n}}(1-t)^{j_{n}}\right) \mid t \in(0,1)\right\}
$$

be a model with a rational MLE.
(1) If $n=1$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 1$. \Leftarrow Invertibility Criterium
(2) If $n=2$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 3$. \Leftarrow Invertibility Criterium
(3) If $n=3$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 5$. \Leftarrow Hyperfield Criterium
(4) If $n=4$, then $\max _{\nu}\left(i_{\nu}+j_{\nu}\right) \leq 7$. $\Leftarrow \mathrm{HypC}+\operatorname{InvC}+\mathrm{HexC}$

Main results

Conjecture

Let w be a valid outcome. Then $\operatorname{deg}(w) \leq 2 \cdot \# \operatorname{supp}^{+}(w)-3$.

Some computations

The conjecture holds when $\operatorname{deg}(w) \leq 9$.

$n \backslash d$	1	2	3	4	5	6	7	8	9
2	1	-	-	-	-	-	-	-	-
3	-	3	1	-	-	-	-	-	-
4	-	-	12	4	2	-	-	-	-
5	-	-	-	82	38	10	4	-	-
6	-	-	-	-	602	254	88	24	2

$\#\left\{\right.$ "fundamental" outcomes with $\left.\left.\# \operatorname{supp}^{+}(w)=n, \operatorname{deg}(w)\right)=d\right\}$

Curves with a rational MLE

Thank you for your attention!

Eliana Duarte, Orlando Marigliano, Bernd Sturmfels

Discrete statistical models with rational maximum likelihood estimator
Bernoulli 27 (2021), pp. 135-154
Arthur Bik, Orlando Marigliano
Discrete statistical curves with rational maximum likelihood estimator
in preparation

