Curves with a rational MLE and chipfiring games

Arthur Bik

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Seminar on Nonlinear Algebra

23 March 2022

MAX-PLANCK-GESELLSCHAFT

Let
$$\Delta_n$$
 be $\{(p_0, p_1, \dots, p_n) \in \mathbb{R}^{n+1}_{>0} \mid p_0 + p_1 + \dots + p_n = 1\}.$

Definition

A discrete statistical model is a subset \mathcal{M} of Δ_n . The points of \mathcal{M} represent probability distributions on the set $\{0, 1, \ldots, n\}$.

Definition

The maximum likelihood estimator (MLE) of \mathcal{M} is the function

$$\Phi\colon \Delta_n\to \mathcal{M}$$

such that $(\hat{p}_0, \hat{p}_1, \dots, \hat{p}_n) = \Phi(u_0, u_n, \dots, u_n)$ maximizes over \mathcal{M} the chance that distribution (u_0, u_1, \dots, u_n) is observed from an experiment.

Example

Flip a biased coin. When H flip again. Record the outcomes.

$$\mathcal{M} = \{ (p^2, p(1-p), 1-p) \mid p \in (0,1) \}$$

Assume that a + b + c experiments results in outcomes:

$$a \times HH$$
, $b \times HT$, $c \times T$

What value of p maximizes the following?

$$\binom{a+b+c}{a,b,c} \cdot (p^2)^a \cdot (p(1-p))^b \cdot (1-p)^c$$

 $\rightsquigarrow (2a+b)/\hat{p}-(b+2c)/(1-\hat{p})=0 \Rightarrow$

$$\hat{p} = \frac{2a+b}{2a+2b+c} \text{ and } 1-\hat{p} = \frac{b+c}{2a+2b+c}$$

Example

Flip a biased coin. When H flip again. Record the outcomes.

Example

Flip a biased coin twice. When same outcomes flip again. Record HHH, TTT or other.

Theorem (Duarte, Marigliano, Sturmfels)

The following are equivalent:

- 1) The model $\mathcal M$ has a rational MLE.
- 2 There exists a Horn pair (H, λ) such that \mathcal{M} is the image of the Horn map.
- **3** There exists a discriminantal triple (A, Δ, \mathbf{m}) such that \mathcal{M} is the image of the associated map.

Question (Duarte, Marigliano, Sturmfels)

Can models with a rational MLE be classified?

Today (with Orlando Marigliano)

We focus on curves, i.e. models of dimension 1.

Theorem

Let $\mathcal{M}\subseteq \Delta_n$ be a model of dimension 1 with a rational MLE. Then

$$\mathcal{M} = \{ (\lambda_0 t^{i_0} (1-t)^{j_0}, \lambda_1 t^{i_1} (1-t)^{j_1}, \dots, \lambda_n t^{i_n} (1-t)^{j_n}) \mid t \in (0,1) \}$$

for some $\lambda_{\nu} \in \mathbb{R}_{>0}$ and monomials $t^{i_{\nu}} (1-t)^{j_{\nu}}$ in $t, 1-t$ such that
 $\lambda_0 t^{i_0} (1-t)^{j_0} + \lambda_1 t^{i_1} (1-t)^{j_1} + \dots + \lambda_n t^{i_n} (1-t)^{j_n} = 1$

as polynomials.

Proof.

(\Leftarrow) Compute the MLE. (\Rightarrow) Models with rational MLE are unirational.

 \square

Model consists of data $(\lambda_{\nu}, i_{\nu}, j_{\nu})$ for $\nu = 0, \dots, n$ such that $\lambda_0 t^{i_0} (1-t)^{j_0} + \lambda_1 t^{i_1} (1-t)^{j_1} + \dots + \lambda_n t^{i_n} (1-t)^{j_n} = 1.$

Reductions

1 If $(i_{\nu}, j_{\nu}) = (0, 0)$, discard $(\lambda_{\nu}, i_{\nu}, j_{\nu})$ and scale by $(1 - \lambda_n u)^{-1}$. 2 If $(i_{\nu}, j_{\nu}) = (i_{\nu'}, j_{\nu'})$, combine them (by adding λ_{ν} and $\lambda_{\nu'}$).

We assume the model is reduced, i.e. all (i_{ν},j_{ν}) distinct from (0,0) and from each other.

Proposition

The data $(\lambda_
u, i_
u, j_
u)$ for $u = 0, \dots, n$ form a model \Leftrightarrow

$$-1 + \lambda_0 x^{i_0} y^{j_0} + \lambda_1 x^{i_1} y^{j_1} + \ldots + \lambda_n x^{i_n} y^{j_n} = (x+y-1) \sum_{i,j=0}^{\infty} f_{i,j} x^i y^j$$

for some $f_{i,j} \in \mathbb{R}$ almost all zero.

Let G = (V, E) be a (fixed) directed graph without loops. Let $v_0 \in V$ have at least 1 outgoing edge $(v_0, v) \in E$.

Definition

- **1** A chip configuration is a tuple $w = (w_v)_{v \in V} \in \mathbb{Z}^V$.
- 2 A chipsplitting move at v_0 sends w to \widetilde{w} defined by

$$\widetilde{w}_v = \begin{cases} w_v - 1 & \text{if } v = v_0, \\ w_v + 1 & \text{if } (v_0, v) \in E, \\ w_v & \text{otherwise} \end{cases}$$

An unsplitting move at v_0 is its inverse.

- **3** The initial configuration w is given by $w_v = 0$ for all $v \in V$.
- **4** A chipsplitting game f is a finite sequence of moves.
- The outcome of f is the result of applying all moves starting from the initial configuration.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Let
$$d \in \{1, 2, 3, \dots, \infty\}$$
. Define
 $V_d := \{(i, j) \in \mathbb{Z}_{\geq 0}^2 \mid \deg(i, j) \leq d\}$
 $E_d := \{(v, v + e) \mid v \in V_{d-1}, e \in \{(1, 0), (0, 1)\}\}$

where $\deg(i, j) := i + j$.

Example

We apply a splitting move at the red vertex.

Proposition

The data $(\lambda_{
u}, i_{
u}, j_{
u})$ for $u = 0, \dots, n$ form a model \Leftrightarrow

$$-1 + \lambda_0 x^{i_0} y^{j_0} + \lambda_1 x^{i_1} y^{j_1} + \ldots + \lambda_n x^{i_n} y^{j_n} = (x + y - 1) \sum_{i,j=0}^{\infty} f_{i,j} x^i y^j$$

for some $f_{i,j} \in \mathbb{R}$ almost all finite.

Assume the model is reduced and set

$$w_{i,j} = \begin{cases} \lambda_{\nu} & \text{if } (i,j) = (i_{\nu}, j_{\nu}), \\ -1 & \text{if } (i,j) = (0,0), \\ 0 & \text{otherwise} \end{cases}$$

Then $(w_{i,j})_{(i,j)\in V_d}$ is the outcome of the chipsplitting game where (i, j) is split $f_{i,j}$ times (where unsplitting moves count negatively).

Definition

- **1** A chip configuration w is valid when $w_{i,j} \ge 0$ for all $(i,j) \ne (0,0)$.
- **2** The *positive support* of w is $supp^+(w) := \{(i, j) | w_{i,j} > 0\}.$
- **3** The *degree* of w is $deg(w) := max\{deg(i, j) \mid w_{i,j} \neq 0\}$.

Conjecture

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Why is the nice?

- The conjecture gives a bound of the degree of the parametrisation of a dimension-1 curve with a rational MLE.
- The conjecture shows that there are finitely many "fundamental" models in Δ_n , which can be used to get any other model.

Definition

A model $\{(\lambda_{\nu}, i_{\nu}, j_{\nu}) \mid \nu = 0, \dots, n\}$ is fundamental when the λ_{ν} are unique given the i_{ν}, j_{ν} .

Composition

Let $\mu \in (0,1)$. The μ -composite of models

$$\{(\lambda_{i,j}, i, j) \mid (i, j) \in S\}, \quad \{(\lambda'_{i,j}, i, j) \mid (i, j) \in S'\}$$

is the model

$$\{(\lambda_{i,j} + \lambda'_{i,j}, i, j) \mid (i,j) \in S \cup S'\}$$

where $\lambda_{i,j} := 0$ for all $(i,j) \notin S$ and $\lambda'_{i,j} := 0$ for all $(i,j) \notin S'$.

Theorem

Every reduced model in Δ_n is a composite of $\leq n$ fundamental models (from Δ_m with m < n).

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Why believe the conjecture?

- Computer search for low degree. $(\frac{1}{2}(\deg(w) + 3) \le \# \operatorname{supp}^+(w))$
- Take d = 2k + 1. Let $w = (w_{i,j})_{(i,j) \in V_d} \in \mathbb{Z}^{V_d}$ be defined by

$$w_{0,0} = -1,$$

$$w_{0,2k+1} = 1,$$

$$w_{2i+1,k-i} = \frac{2k+1}{2i+1} \binom{k+i}{2i}, \quad i \in \{0, 1, \dots, k\}$$

and $w_{i,j} = 0$ otherwise. Then w is a valid outcome. $\deg(w) = 2k + 1 = 2 \cdot (k+2) - 3 = 2 \cdot \# \operatorname{supp}^+(w) - 3$

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Main result

The conjecture holds when $\# \operatorname{supp}^+(w) \leq 5$.

Corollary

Let

$$\mathcal{M} = \{ (\lambda_0 t^{i_0} (1-t)^{j_0}, \lambda_1 t^{i_1} (1-t)^{j_1}, \dots, \lambda_n t^{i_n} (1-t)^{j_n}) \mid t \in (0,1) \}$$

be a model with a rational MLE.

1 If
$$n = 1$$
, then $\max_{\nu} (i_{\nu} + j_{\nu}) \le 1$.

2 If
$$n=2$$
, then $\max_{\nu}(i_{\nu}+j_{\nu})\leq 3$

3 If
$$n=3$$
, then $\max_{\nu}(i_{\nu}+j_{\nu})\leq 5$.

4 If
$$n = 4$$
, then $\max_{\nu} (i_{\nu} + j_{\nu}) \le 7$.

Let w be a valid outcome. Then $\deg(w) \leq 2 \cdot \# \operatorname{supp}^+(w) - 3$.

We aim to prove that certain chip configurations cannot be the outcome of a chipsplitting game.

Here are the tools:

- 1 Invertibility Criterium
- 2 Hyperfield Criterium
- 8 Hexagon Criterium
- 4 a computer

Pascal equations

For $(k,\ell)\in V_{d-1}$, take $E^{(k,\ell)}\in\mathbb{Z}_d^V$ so that

$$E_{i,j}^{(k,\ell)} = \begin{cases} 1 & \text{when } (i,j) \in \{(k+1,\ell), (k,\ell+1)\}, \\ -1 & \text{when } (i,j) = (k,\ell), \\ 0 & \text{otherwise} \end{cases}$$

Then $\operatorname{span}_{\mathbb{Z}} \{ E^{(k,\ell)} \mid (k,\ell) \in V_{d-1} \}$ is the space of outcomes.

Definition

A Pascal equation on \mathbb{Z}^{V_d} is a linear form

$$\sum_{i,j)\in V_d} c_{i,j} x_{i,j}$$

such that $c_{i,j} = c_{i+1,j} + c_{i,j+1}$ for all $(i,j) \in V_{d-1}$.

We have $\{\text{outcomes}\} = V(\text{Pascal equations}).$

A

For $a, b \ge 0$ with a + b = d, define

$$\varphi_{a,b} := \sum_{i=0}^{a} \sum_{j=0}^{b} \binom{d-(i+j)}{a-i} x_{i,j} = \sum_{i=0}^{a} \sum_{j=0}^{b} \binom{d-(i+j)}{b-j} x_{i,j}$$

For $w \in \mathbb{Z}^{V_d}$, define $\operatorname{supp}(w) := \{(i, j) \in V_d \mid w_{i,j} \neq 0\} \subseteq V_d$.

Invertibility Criterium

Let $S \subseteq V_d$ and $E \subseteq \{(a, b) \in V_d \mid a + b = d\}$ be subsets of the same size. Let $w \in \mathbb{Z}^{V_d}$ be an outcome. Suppose that the matrix

$$A_{E,S} := \left(\begin{pmatrix} d - (i+j) \\ a - i \end{pmatrix} \right)_{a \in E, (i,j) \in S}$$

is invertible. Then $\operatorname{supp}(w) \neq S$.

How to apply it?

- Split into pieces.
- Ø Use symmetry:

We have an action of S_3 on \mathbb{Z}^{V_d} given by

$$(12) \cdot (w_{i,j})_{(i,j) \in V_d} := (w_{j,i})_{(i,j) \in V_d} (13) \cdot (w_{i,j})_{(i,j) \in V_d} = ((-1)^{d-j} w_{d-(i+j),j})_{(i,j) \in V_d}$$

Definition

A hyperfield is a tuple $(H,+,\cdot,0,1)$ where \ldots

Example (Sign hyperfield)

Take $H=\{1,0,-1\}$ with usual multiplication and

$$s + r := \{ \operatorname{sign}(x + y) \mid x, y \in \mathbb{R}, \operatorname{sign}(x) = s, \operatorname{sign}(y) = r \}$$

for all $s, r \in H$.

We have 0 + s = s, s + s = s and 1 + (-1) = H.

Definition

A hyperfield is a tuple $(H,+,\cdot,0,1)$ where

 $-+-: H \times H \to 2^H \setminus \{\emptyset\}, \quad -\cdot -: H \times H \to H$

are symmetric maps satisfying the following relations:

1 The tuple
$$(H \setminus \{0\}, \cdot, 1)$$
 is a group.

- 2 We have $0 \cdot x = 0$ and $0 + x = \{x\}$ for all $x \in H$.
- **3** We have $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$ for all $a, x, y \in H$.
- **④** For every $x \in H$ there is an unique element $-x \in H$ such that $x + (-x) \ni 0$.

A subset of ${\cal H}^n$ is Zariski-closed when it is of the form

$$\{(s_1, \ldots, s_n) \in H^n \mid f_1(s_1, \ldots, s_n), \ldots, f_k(s_1, \ldots, s_n) \ni 0\}$$

for some polynomials f_1, \ldots, f_k over H in variables x_1, \ldots, x_n .

Example (Sign hyperfield) Take $H = \{1, 0, -1\}$ with usual multiplication and 0 + s = s, s + s = s, 1 + (-1) = HTake $f = x_1 + x_2 - x_3 - x_4$ and $s_1, s_2, s_3, s_4 \in H$. Then $f(s_1, s_2, s_3, s_4) \ni 0 \quad \Leftrightarrow \quad \begin{cases} s_1 = s_2 = s_3 = s_4 = 0\\ \text{or}\\ 1, -1 \in \{s_1, s_2, -s_3, -s_4\} \end{cases}$ $\Leftrightarrow \begin{cases} f(s_1, s_2, s_3, s_4) = 0\\ \text{or}\\ f(s_1, s_2, s_3, s_4) = H \end{cases}$

 \square

For $f = \sum_i c_i x_i \in \mathbb{R}[x_1, \dots, x_n]$, take $\operatorname{sign}(f) := \sum_i \operatorname{sign}(c_i) x_i$.

Hyperfield Criterium

Let $w \in \mathbb{Z}^{V_d}$ be an outcome and $s \in H^{V_d}$. Suppose that $\operatorname{sign}(\phi)$ does not vanish at s for some Pascal equation ϕ on \mathbb{Z}^{V_d} . Then $\operatorname{sign}(w) \neq s$.

How to apply it?

A

Let $\ell_1, \ell_2 \ge d' \ge 1$ be integers such that $d' + \ell_1 + \ell_2 \le d$.

Let $w = (w_{i,j})_{(i,j) \in V_d} \in \mathbb{Z}^{V_d}$ and write $w' = (w_{i,j})_{(i,j) \in V_{d'}} \in \mathbb{Z}^{V_{d'}}$.

Hexagon Criterium

Suppose that w^\prime is not an outcome and

 $supp(w) \subseteq V_{d'} \cup \{(i,j) \in V_d \mid j > d - \ell_1\} \cup \{(i,j) \in V_d \mid i > d - \ell_2\}$

holds. Then w is not an outcome.

How to apply it?

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Main result

The conjecture holds when $\# \operatorname{supp}^+(w) \leq 5$.

Corollary

Let

$$\mathcal{M} = \{ (\lambda_0 t^{i_0} (1-t)^{j_0}, \lambda_1 t^{i_1} (1-t)^{j_1}, \dots, \lambda_n t^{i_n} (1-t)^{j_n}) \mid t \in (0,1) \}$$

be a model with a rational MLE.

1 If
$$n = 1$$
, then $\max_{\nu} (i_{\nu} + j_{\nu}) \le 1$.

2 If
$$n = 2$$
, then $\max_{\nu} (i_{\nu} + j_{\nu}) \le 3$

3 If
$$n=3$$
, then $\max_{\nu}(i_{\nu}+j_{\nu})\leq 5$.

4 If
$$n = 4$$
, then $\max_{\nu} (i_{\nu} + j_{\nu}) \le 7$.

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Main result

The conjecture holds when $\# \operatorname{supp}^+(w) \leq 5$.

Corollary

Let

$$\mathcal{M} = \{ (\lambda_0 t^{i_0} (1-t)^{j_0}, \lambda_1 t^{i_1} (1-t)^{j_1}, \dots, \lambda_n t^{i_n} (1-t)^{j_n}) \mid t \in (0,1) \}$$

be a model with a rational MLE.

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Main result

The conjecture holds when $\# \operatorname{supp}^+(w) \leq 5$.

Corollary

Let

$$\mathcal{M} = \{ (\lambda_0 t^{i_0} (1-t)^{j_0}, \lambda_1 t^{i_1} (1-t)^{j_1}, \dots, \lambda_n t^{i_n} (1-t)^{j_n}) \mid t \in (0,1) \}$$

be a model with a rational MLE.

1 If n = 1, then $\max_{\nu}(i_{\nu} + j_{\nu}) \le 1$. \Leftarrow Invertibility Criterium 2 If n = 2, then $\max_{\nu}(i_{\nu} + j_{\nu}) \le 3$. \Leftarrow Invertibility Criterium 3 If n = 3, then $\max_{\nu}(i_{\nu} + j_{\nu}) \le 5$. \Leftarrow Hyperfield Criterium 4 If n = 4, then $\max_{\nu}(i_{\nu} + j_{\nu}) \le 7$.

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Main result

The conjecture holds when $\# \operatorname{supp}^+(w) \leq 5$.

Corollary

Let

$$\mathcal{M} = \{ (\lambda_0 t^{i_0} (1-t)^{j_0}, \lambda_1 t^{i_1} (1-t)^{j_1}, \dots, \lambda_n t^{i_n} (1-t)^{j_n}) \mid t \in (0,1) \}$$

be a model with a rational MLE.

If n = 1, then max_ν(i_ν + j_ν) ≤ 1. ⇐ Invertibility Criterium
 If n = 2, then max_ν(i_ν + j_ν) ≤ 3. ⇐ Invertibility Criterium
 If n = 3, then max_ν(i_ν + j_ν) ≤ 5. ⇐ Hyperfield Criterium
 If n = 4, then max_ν(i_ν + j_ν) ≤ 7. ⇐ HypC + InvC + HexC

Let w be a valid outcome. Then $\deg(w) \le 2 \cdot \# \operatorname{supp}^+(w) - 3$.

Some computations

The conjecture holds when $\deg(w) \leq 9$.

$n \backslash d$	1	2	3	4	5	6	7	8	9
2	1	_	—	_	_	—	_	—	_
3	_	3	1	_	_	_	_	_	—
4		_	12	4	2	_	_	_	-
5	_	_	_	82	38	10	4	_	-
6	_	_	—	_	602	254	88	24	2

 $\#\{\text{``fundamental'' outcomes with } \#\operatorname{supp}^+(w) = n, \deg(w)) = d\}$

Thank you for your attention!

References

🔋 Eliana Duarte, Orlando Marigliano, Bernd Sturmfels

Discrete statistical models with rational maximum likelihood estimator

Bernoulli 27 (2021), pp. 135-154

Arthur Bik, Orlando Marigliano

Discrete statistical curves with rational maximum likelihood estimator

in preparation