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Discrete statistical models

Let ∆n be {(p0, p1, . . . , pn) ∈ Rn+1
>0 | p0 + p1 + . . .+ pn = 1}.

Definition
A discrete statistical model is a subset M of ∆n. The points of
M represent probability distributions on the set {0, 1, . . . , n}.

Definition
The maximum likelihood estimator (MLE) of M is the function

Φ: ∆n →M

such that (p̂0, p̂1, . . . , p̂n) = Φ(u0, un, . . . , un) maximizes over M
the chance that distribution (u0, u1, . . . , un) is observed from an
experiment.
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Discrete statistical models

Example
Flip a biased coin. When H flip again. Record the outcomes.

p

p

1− p

1− p

T

HH

HT

M = {(p2, p(1− p), 1− p) | p ∈ (0, 1)}
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Discrete statistical models

M = {(p2, p(1− p), 1− p) | p ∈ (0, 1)}

Assume that a+ b+ c experiments results in outcomes:

a× HH, b× HT, c× T

What value of p maximizes the following?(
a+ b+ c

a, b, c

)
· (p2)a · (p(1− p))b · (1− p)c

 (2a+ b)/p̂− (b+ 2c)/(1− p̂) = 0⇒

p̂ = 2a+ b

2a+ 2b+ c
and 1− p̂ = b+ c

2a+ 2b+ c
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Discrete statistical models

Example
Flip a biased coin. When H flip again. Record the outcomes.

p

p

1− p

1− p

T

HH

HT

M = {(p2, p(1− p), 1− p) | p ∈ (0, 1)}

Φ(a, b, c) =
(( 2a+ b

2a+ 2b+ c

)2
,

2a+ b

2a+ 2b+ c
· b+ c

2a+ 2b+ c
,

b+ c

2a+ 2b+ c

)
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Discrete statistical models

Example
Flip a biased coin twice. When same outcomes flip again.
Record HHH, TTT or other.

p

p

p

1− p

1− p

1− p

1− p

p

1− p

p

TTT

HHH

other

M = {(p3, 3p(1− p), (1− p)3) | p ∈ (0, 1)} and p̂ = 3a+ b

3a+ 2b+ 3c
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Discrete statistical models with a rational MLE

Theorem (Duarte, Marigliano, Sturmfels)
The following are equivalent:

1 The model M has a rational MLE.
2 There exists a Horn pair (H,λ) such that M is the image of

the Horn map.
3 There exists a discriminantal triple (A,∆,m) such that M is

the image of the associated map.

Question (Duarte, Marigliano, Sturmfels)
Can models with a rational MLE be classified?

Today (with Orlando Marigliano)
We focus on curves, i.e. models of dimension 1.
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Curves with a rational MLE

Theorem
Let M⊆ ∆n be a model of dimension 1 with a rational MLE.
Then

M = {(λ0t
i0(1−t)j0 , λ1t

i1(1−t)j1 , . . . , λntin(1−t)jn) | t ∈ (0, 1)}

for some λν ∈ R>0 and monomials tiν (1− t)jν in t, 1− t such that

λ0t
i0(1− t)j0 + λ1t

i1(1− t)j1 + . . .+ λnt
in(1− t)jn = 1

as polynomials.

Proof.
(⇐) Compute the MLE.
(⇒) Models with rational MLE are unirational.
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Curves with a rational MLE

Model consists of data (λν , iν , jν) for ν = 0, . . . , n such that
λ0t

i0(1− t)j0 + λ1t
i1(1− t)j1 + . . .+ λnt

in(1− t)jn = 1.

Reductions
1 If (iν , jν) = (0, 0), discard (λν , iν , jν) and scale by (1−λnu)−1.
2 If (iν , jν) = (iν′ , jν′), combine them (by adding λν and λν′).

We assume the model is reduced, i.e. all (iν , jν) distinct from
(0, 0) and from each other.

Proposition
The data (λν , iν , jν) for ν = 0, . . . , n form a model ⇔

−1+λ0x
i0yj0 +λ1x

i1yj1 + . . .+λnxinyjn = (x+y−1)
∞∑

i,j=0
fi,jx

iyj

for some fi,j ∈ R almost all zero.
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Chipsplitting games

Let G = (V,E) be a (fixed) directed graph without loops.
Let v0 ∈ V have at least 1 outgoing edge (v0, v) ∈ E.

Definition
1 A chip configuration is a tuple w = (wv)v∈V ∈ ZV .
2 A chipsplitting move at v0 sends w to w̃ defined by

w̃v =


wv − 1 if v = v0,
wv + 1 if (v0, v) ∈ E,
wv otherwise

An unsplitting move at v0 is its inverse.
3 The initial configuration w is given by wv = 0 for all v ∈ V .
4 A chipsplitting game f is a finite sequence of moves.
5 The outcome of f is the result of applying all moves starting

from the initial configuration.
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
0 0 0
0 0 0 0
1 0 0 0 0
−1 1 0 0 0 0
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
0 0 0
1 0 0 0
0 1 0 0 0
−1 1 0 0 0 0
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
0 0 0
1 0 0 0
0 2 0 0 0
−1 0 1 0 0 0
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
1 0 0
0 1 0 0
0 2 0 0 0
−1 0 1 0 0 0
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
1 0 0
0 1 0 0
0 2 1 0 0
−1 0 0 1 0 0
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Chipsplitting games

Let d ∈ {1, 2, 3, . . . ,∞}. Define

Vd := {(i, j) ∈ Z2
≥0 | deg(i, j) ≤ d}

Ed := {(v, v + e) | v ∈ Vd−1, e ∈ {(1, 0), (0, 1)}}

where deg(i, j) := i+ j.

Example
We apply a splitting move at the red vertex.

0
0 0
1 0 0
0 0 0 0
0 3 0 0 0
−1 0 0 1 0 0
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Curves with a rational MLE as outcomes

Proposition
The data (λν , iν , jν) for ν = 0, . . . , n form a model ⇔

−1+λ0x
i0yj0 +λ1x

i1yj1 + . . .+λnxinyjn = (x+y−1)
∞∑

i,j=0
fi,jx

iyj

for some fi,j ∈ R almost all finite.

Assume the model is reduced and set

wi,j =


λν if (i, j) = (iν , jν),
−1 if (i, j) = (0, 0),
0 otherwise

Then (wi,j)(i,j)∈Vd is the outcome of the chipsplitting game where
(i, j) is split fi,j times (where unsplitting moves count negatively).
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Chipsplitting games

Definition
1 A chip configuration w is valid when wi,j ≥ 0 for all (i, j) 6= (0, 0).
2 The positive support of w is supp+(w) := {(i, j) | wi,j > 0}.
3 The degree of w is deg(w) := max{deg(i, j) | wi,j 6= 0}.

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Why is the nice?
• The conjecture gives a bound of the degree of the

parametrisation of a dimension-1 curve with a rational MLE.
• The conjecture shows that there are finitely many ”fundamental”

models in ∆n, which can be used to get any other model.
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Composite models

Definition
A model {(λν , iν , jν) | ν = 0, . . . , n} is fundamental when the λν
are unique given the iν , jν .

Composition
Let µ ∈ (0, 1). The µ-composite of models

{(λi,j , i, j) | (i, j) ∈ S}, {(λ′i,j , i, j) | (i, j) ∈ S′}

is the model

{(λi,j + λ′i,j , i, j) | (i, j) ∈ S ∪ S′}

where λi,j := 0 for all (i, j) 6∈ S and λ′i,j := 0 for all (i, j) 6∈ S′.

Theorem
Every reduced model in ∆n is a composite of ≤ n fundamental
models (from ∆m with m < n).
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Chipsplitting games

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Why believe the conjecture?
• Computer search for low degree. (1

2(deg(w) + 3) ≤ # supp+(w))
• Take d = 2k + 1. Let w = (wi,j)(i,j)∈Vd ∈ ZVd be defined by

w0,0 = −1,
w0,2k+1 = 1,

w2i+1,k−i = 2k + 1
2i+ 1

(
k + i

2i

)
, i ∈ {0, 1, . . . , k}

and wi,j = 0 otherwise. Then w is a valid outcome.
deg(w) = 2k + 1 = 2 · (k + 2)− 3 = 2 ·# supp+(w)− 3
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Main results

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Main result
The conjecture holds when # supp+(w) ≤ 5.

Corollary
Let

M = {(λ0t
i0(1−t)j0 , λ1t

i1(1−t)j1 , . . . , λntin(1−t)jn) | t ∈ (0, 1)}

be a model with a rational MLE.
1 If n = 1, then maxν(iν + jν) ≤ 1.
2 If n = 2, then maxν(iν + jν) ≤ 3.
3 If n = 3, then maxν(iν + jν) ≤ 5.
4 If n = 4, then maxν(iν + jν) ≤ 7.
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The proof

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

We aim to prove that certain chip configurations cannot be the
outcome of a chipsplitting game.

Here are the tools:
1 Invertibility Criterium
2 Hyperfield Criterium
3 Hexagon Criterium
4 a computer
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Pascal equations

For (k, `) ∈ Vd−1, take E(k,`) ∈ ZVd so that

E
(k,`)
i,j =


1 when (i, j) ∈ {(k + 1, `), (k, `+ 1)},
−1 when (i, j) = (k, `),
0 otherwise

Then spanZ{E(k,`) | (k, `) ∈ Vd−1} is the space of outcomes.

Definition
A Pascal equation on ZVd is a linear form∑

(i,j)∈Vd

ci,jxi,j

such that ci,j = ci+1,j + ci,j+1 for all (i, j) ∈ Vd−1.

We have {outcomes} = V (Pascal equations).
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The Invertibility Criterium

For a, b ≥ 0 with a+ b = d, define

ϕa,b :=
a∑
i=0

b∑
j=0

(
d− (i+ j)
a− i

)
xi,j =

a∑
i=0

b∑
j=0

(
d− (i+ j)
b− j

)
xi,j

For w ∈ ZVd , define supp(w) := {(i, j) ∈ Vd | wi,j 6= 0} ⊆ Vd.

Invertibility Criterium
Let S ⊆ Vd and E ⊆ {(a, b) ∈ Vd | a+ b = d} be subsets of the
same size. Let w ∈ ZVd be an outcome. Suppose that the matrix

AE,S :=
((

d− (i+ j)
a− i

))
a∈E,(i,j)∈S

is invertible. Then supp(w) 6= S.
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The Invertibility Criterium

How to apply it?
1 Split into pieces.
2 Use symmetry:

We have an action of S3 on ZVd given by

(12) · (wi,j)(i,j)∈Vd := (wj,i)(i,j)∈Vd

(13) · (wi,j)(i,j)∈Vd = ((−1)d−jwd−(i+j),j)(i,j)∈Vd

+
-
+
-
+
-
+
-
+
-
+
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The Hyperfield Criterium

Definition
A hyperfield is a tuple (H,+, ·, 0, 1) where ...

Example (Sign hyperfield)
Take H = {1, 0,−1} with usual multiplication and

s+ r := {sign(x+ y) | x, y ∈ R, sign(x) = s, sign(y) = r}

for all s, r ∈ H.

We have 0 + s = s, s+ s = s and 1 + (−1) = H.
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The Hyperfield Criterium

Definition
A hyperfield is a tuple (H,+, ·, 0, 1) where

−+− : H ×H → 2H \ {∅}, − · − : H ×H → H

are symmetric maps satisfying the following relations:
1 The tuple (H \ {0}, ·, 1) is a group.
2 We have 0 · x = 0 and 0 + x = {x} for all x ∈ H.
3 We have a · (x+ y) = (a · x) + (a · y) for all a, x, y ∈ H.
4 For every x ∈ H there is an unique element −x ∈ H such

that x+ (−x) 3 0.

A subset of Hn is Zariski-closed when it is of the form

{(s1, . . . , sn) ∈ Hn | f1(s1, . . . , sn), . . . , fk(s1, . . . , sn) 3 0}

for some polynomials f1, . . . , fk over H in variables x1, . . . , xn.
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The Hyperfield Criterium

Example (Sign hyperfield)
Take H = {1, 0,−1} with usual multiplication and

0 + s = s, s+ s = s, 1 + (−1) = H

Take f = x1 + x2 − x3 − x4 and s1, s2, s3, s4 ∈ H. Then

f(s1, s2, s3, s4) 3 0 ⇔


s1 = s2 = s3 = s4 = 0

or
1,−1 ∈ {s1, s2,−s3,−s4}

⇔


f(s1, s2, s3, s4) = 0

or
f(s1, s2, s3, s4) = H
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The Hyperfield Criterium

For f =
∑
i cixi ∈ R[x1, . . . , xn], take sign(f) :=

∑
i sign(ci)xi.

Hyperfield Criterium
Let w ∈ ZVd be an outcome and s ∈ HVd . Suppose that sign(φ)
does not vanish at s for some Pascal equation φ on ZVd . Then
sign(w) 6= s.

How to apply it?
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The Hexagon Criterium

Let `1, `2 ≥ d′ ≥ 1 be integers such that d′ + `1 + `2 ≤ d.

Let w = (wi,j)(i,j)∈Vd ∈ ZVd and write w′ = (wi,j)(i,j)∈Vd′ ∈ ZVd′ .

Hexagon Criterium
Suppose that w′ is not an outcome and

supp(w) ⊆ Vd′∪{(i, j) ∈ Vd | j > d−`1}∪{(i, j) ∈ Vd | i > d−`2}

holds. Then w is not an outcome.

How to apply it?
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Main results

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Main result
The conjecture holds when # supp+(w) ≤ 5.

Corollary
Let

M = {(λ0t
i0(1−t)j0 , λ1t

i1(1−t)j1 , . . . , λntin(1−t)jn) | t ∈ (0, 1)}

be a model with a rational MLE.
1 If n = 1, then maxν(iν + jν) ≤ 1.
2 If n = 2, then maxν(iν + jν) ≤ 3.
3 If n = 3, then maxν(iν + jν) ≤ 5.
4 If n = 4, then maxν(iν + jν) ≤ 7.
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Main results

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Main result
The conjecture holds when # supp+(w) ≤ 5.

Corollary
Let

M = {(λ0t
i0(1−t)j0 , λ1t

i1(1−t)j1 , . . . , λntin(1−t)jn) | t ∈ (0, 1)}

be a model with a rational MLE.
1 If n = 1, then maxν(iν + jν) ≤ 1. ⇐ Invertibility Criterium
2 If n = 2, then maxν(iν + jν) ≤ 3. ⇐ Invertibility Criterium
3 If n = 3, then maxν(iν + jν) ≤ 5.
4 If n = 4, then maxν(iν + jν) ≤ 7.
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Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Main result
The conjecture holds when # supp+(w) ≤ 5.
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Let
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i0(1−t)j0 , λ1t
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Main results

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Main result
The conjecture holds when # supp+(w) ≤ 5.

Corollary
Let

M = {(λ0t
i0(1−t)j0 , λ1t

i1(1−t)j1 , . . . , λntin(1−t)jn) | t ∈ (0, 1)}

be a model with a rational MLE.
1 If n = 1, then maxν(iν + jν) ≤ 1. ⇐ Invertibility Criterium
2 If n = 2, then maxν(iν + jν) ≤ 3. ⇐ Invertibility Criterium
3 If n = 3, then maxν(iν + jν) ≤ 5. ⇐ Hyperfield Criterium
4 If n = 4, then maxν(iν + jν) ≤ 7. ⇐ HypC + InvC + HexC
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Main results

Conjecture
Let w be a valid outcome. Then deg(w) ≤ 2 ·# supp+(w)− 3.

Some computations
The conjecture holds when deg(w) ≤ 9.

n\d 1 2 3 4 5 6 7 8 9
2 1 − − − − − − − −
3 − 3 1 − − − − − −
4 − − 12 4 2 − − − −
5 − − − 82 38 10 4 − −
6 − − − − 602 254 88 24 2

#{”fundamental” outcomes with # supp+(w) = n, deg(w)) = d}
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Curves with a rational MLE

Thank you for your attention!
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