Strength of Polynomials

Arthur Bik

Seminar on Nonlinear Algebra

$$
13 \text { August } 2021
$$

The strength of polynomials

Let f be a homogeneous polynomial of degree $d \geq 2$ over \mathbb{C}.

Definition

The strength of f is the minimal number $\operatorname{str}(f):=r \geq 0$ such that

$$
f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

with $g_{1}, h_{1}, \ldots, g_{r}, h_{r}$ homogeneous polynomials of degree $\leq d-1$.

First examples

(0) $\operatorname{str}(f)=0 \Leftrightarrow f=0$
(1) $\operatorname{str}(f)=1 \Leftrightarrow f \neq 0$ is reducible
(2) $\operatorname{str}(f) \geq 2 \Leftrightarrow f$ is irreducible

Example

The polynomial

$$
x^{2}+y^{2}+z^{2}=(x+i y) \cdot(x-i y)+z \cdot z
$$

has strength 2 .
(It would be 3 over \mathbb{R}.)

Why care about strength?

Reason 1 - Data efficiency

A homogeneous polynomial of degree d in $n+1$ variables has

$$
\binom{n+d}{d}
$$

coefficients.

A polynomial f of degree 3 in 10^{6} variables has

$$
\approx 1.67 \cdot 10^{17}
$$

coefficients.

The number of coefficients in a strength decomposition is

$$
\approx \operatorname{str}(f) \cdot 5.00 \cdot 10^{11}
$$

So saving this uses $\approx 33400 / \operatorname{str}(f)$ times less space.

Why care about strength?

Reason 2 - Universality

Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ be a homogeneous polynomial.
For $c_{11}, \ldots, c_{n m} \in \mathbb{C}$, the polynomial
$f\left(c_{11} y_{1}+\ldots+c_{1 m} y_{m}, \ldots, c_{n 1} y_{1}+\ldots+c_{n m} y_{m}\right) \in \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]_{d}$ is a coordinate transformation of f.

Theorem (Kazhdan-Ziegler, B-Draisma-Eggermont)

Let \mathcal{P} be a property of degree- d polynomials such that f has $\mathcal{P} \Leftrightarrow$ every coordinate transformation of f has \mathcal{P} and not every polynomial has \mathcal{P}. Then the exists a $k \geq 0$ such that

$$
f \text { has } \mathcal{P} \Rightarrow \operatorname{str}(f) \leq k
$$

Why care about strength?

Reason 2 - Universality

Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ be a homogeneous polynomial.
For $c_{11}, \ldots, c_{n m} \in \mathbb{C}$, the polynomial
$f\left(c_{11} y_{1}+\ldots+c_{1 m} y_{m}, \ldots, c_{n 1} y_{1}+\ldots+c_{n m} y_{m}\right) \in \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]_{d}$ is a coordinate transformation of f.

Example (Kazhdan-Ziegler)

For every $\ell \geq 0$, there exists a $k \geq 0$ such that all partial derivatives of f have strength $\leq \ell \Rightarrow \operatorname{str}(f) \leq k$
This property satisfies the condition because of the chain rule.

Why care about strength?

Reason 3 - It is like the rank of matrices

We have a one-to-one correspondence

$$
\begin{aligned}
\left\{A \in \mathbb{C}^{n \times n} \mid A=A^{\top}\right\} & \leftrightarrow \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{2} \\
A & \mapsto\left(x_{1}, \ldots, x_{n}\right) A\left(x_{1}, \ldots, x_{n}\right)^{\top} \\
\left(a_{1}, \ldots, a_{n}\right)^{\top}\left(a_{1}, \ldots, a_{n}\right) & \mapsto\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)^{2} \\
v w^{\top}+w v^{\top} & \mapsto 2 \cdot\left(x_{1}, \ldots, x_{n}\right) v \cdot\left(x_{1}, \ldots, x_{n}\right) w
\end{aligned}
$$

Write $f=\left(x_{1}, \ldots, x_{n}\right) A\left(x_{1}, \ldots, x_{n}\right)^{\top}$. Then
$\operatorname{str}(f) \leq k \quad \Leftrightarrow \quad f$ is a sum of k reducible polynomials
$\Leftrightarrow \quad A$ is a sum of k matrices of rank ≤ 2
$\Leftrightarrow \quad A$ has rank $\leq 2 k$
So $\operatorname{str}(f)=\lceil\operatorname{rk}(A) / 2\rceil$.

Example

$\operatorname{str}\left(x^{2}+y^{2}+z^{2}\right)=\left\lceil\mathrm{rk}\left(I_{3}\right) / 2\right\rceil=2$.

Basic properties of strength

How does strength compare to rank of matrices?

We can compute the rank of a matrix.
(determinants of submatrices / column- and rowoperations)
Q: How do you compute the strength of a polynomial?
The limit of a sequence of matrices of rank $\leq k$ has rank $\leq k$.
Q: Is the subset of polynomials of strength $\leq k$ closed?
An $n \times m$ matrix has maximal rank $\min (n, m)$.
Q: What is the maximal strength of a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?
A random $n \times m$ matrix has rank $\min (n, m)$.
Q: What is the strength of a random polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?

Computing the strength of a polynomial

I don't know how to do this...
Exercise Find an algorithm.

Tricks

(1) We have $\operatorname{str}(f+g) \leq \operatorname{str}(f)+\operatorname{str}(g)$.
(2) For $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$, we define the singular locus:

$$
\operatorname{Sing}(f):=\left\{\frac{\partial f}{\partial x_{1}}=\ldots=\frac{\partial f}{\partial x_{n}}=0\right\}
$$

When $f=g_{1} \cdot h_{1}+\ldots+g_{k} \cdot h_{k}$, then

$$
\left\{g_{1}=h_{1}=\ldots=g_{k}=h_{k}=0\right\} \subseteq \operatorname{Sing}(f)
$$

and so $\operatorname{codim} \operatorname{Sing}(f):=n-\operatorname{dim} \operatorname{Sing}(f) \leq 2 k$.
(3) Every polynomial in $\mathbb{C}[x, y]_{d}$ is reducible. Hence

$$
f \in \mathbb{C}[x, y]_{d} \Rightarrow \operatorname{str}(f) \leq 1
$$

Computing the strength of a polynomial

Example

Consider $f=x_{1}^{d}+\ldots+x_{n}^{d}$.
We have

$$
\begin{aligned}
& f= \begin{cases}\left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{2}+x_{2 k}^{d}\right) & \text { if } n=2 k \\
\left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{2}+x_{2 k}^{d}\right)+x_{2 k+1}^{d} & \text { if } n=2 k+1\end{cases} \\
& \text { and so } \operatorname{str}(f) \leq\lceil n / 2\rceil .
\end{aligned}
$$

The singular locus

$$
\operatorname{Sing}(f)=\left\{d x_{1}^{d-1}=\ldots=d x_{n}^{d-1}=0\right\}=\{(0, \ldots, 0)\} \subseteq \mathbb{C}^{n}
$$

has codimenion n. So $\operatorname{str}(f) \geq\lceil n / 2\rceil$.
So $\operatorname{str}(f)=\lceil n / 2\rceil$.

Strength ≤ 3 is not closed

Q: Is the subset of polynomials of strength $\leq k$ closed?

- For $k=1$, this is the set of reducible polynomials.

$$
\begin{aligned}
\mathbb{P}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{i}\right) \times \mathbb{P}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d-i}\right) & \rightarrow \mathbb{P}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}\right) \\
([g],[h]) & \mapsto
\end{aligned}
$$

has closed image.

- For $k=2$, I don't know. (Conjecture: yes)
- For $d=2$, this is the set of symmetric matrices of rank $\leq 2 k$.
- For $d=3$, this is true. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)

The set of polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{4}$ of strength ≤ 3 is not closed for $n \gg 0$.

Strength ≤ 3 is not closed

For $t \neq 0$ and f, g, p, q of degree 2 and x, y, u, v variables, the polynomial

$$
1 / t\left(\left(x^{2}+t g\right)\left(y^{2}+t f\right)-\left(u^{2}-t q\right)\left(v^{2}-t p\right)-(x y-u v)(x y+u v)\right)
$$

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q+t(f g-p q)
$$

has strength ≤ 3. For $t \rightarrow 0$, we get

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q
$$

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4.

And now for something completely different

Consider the polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

where x, y, u, v have degree 1 and $\underbrace{f, g, p, q}_{\text {variables }}$ have degree 2 .

Definition

For $d \geq 2$, the strength of a polynomial $h \in \mathbb{C}[x, y, u, v, f, g, p, q]_{d}$ is the minimum number $r \geq 0$ (when this exists) such that

$$
h=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

with $g_{1}, h_{1}, \ldots, g_{r}, h_{r}$ homogeneous polynomials of degree $\leq d-1$.

Example

When the g_{i}, h_{i} are homogeneous polynomials of degree ≤ 1, then

$$
g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r} \in \mathbb{C}[x, y, u, v]
$$

Hence the variable f has infinite strength.

And now for something completely different

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .
$1 / 4$ of the proof
We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.

And now for something completely different

Proposition
The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.
Think of $R=\mathbb{C}[x, y, u, v]$ as the set of coefficients.
So $\ell_{i} \in R$ and $h_{i} \in R[f, g, p, q]$.
The coefficients of f, g, p, q on the right are all in $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.
The coefficients $x^{2}, y^{2}, u^{2}, v^{2}$ on the left are not all $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.

Strength ≤ 3 is not closed

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, there are polynomials $f, g, p, q \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]_{2}$ such that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}\left[x, y, u, v, z_{1}, \ldots, z_{n}\right]_{4}
$$

has strength 4 .

Proposition

The polynomial

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}
$$

has strength 4 .
Fact. The proposition implies the theorem.
The proof uses the geometry of polynomial functors.

Generic and maximal strength

Q: What is the maximal strength of a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?
Q: What is the strength of a random polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?

Definition

The slice rank of f is the minimal $\operatorname{slrk}(f):=r \geq 0$ such that

$$
f=\ell_{1} \cdot h_{1}+\ldots+\ell_{r} \cdot h_{r}
$$

with $\ell_{1}, \ldots, \ell_{r}$ and h_{1}, \ldots, h_{r} homogeneous of degrees 1 and $d-1$.
Proposition
(1) $\operatorname{str}(f) \leq \operatorname{slrk}(f) \leq n-1$
(2) $\operatorname{slrk}(f)=\min \left\{\operatorname{codim}(U)\left|U \subseteq \mathbb{C}^{n}, f\right|_{U}=0\right\}$
(3) The subset of polynomials of slice rank $\leq k$ closed.

Generic and maximal strength

Theorem (Harris)

A generic homogeneous polynomial of degree d in $n+1$ variables has slice rank

$$
\min \left\{r \in \mathbb{Z}_{\geq(n+1) / 2} \left\lvert\, r(n+1-r) \geq\binom{ d+n-r}{d}\right.\right\} .
$$

Theorem (B-Oneto)

The strength and slice rank of a homogeneous polynomial of degree d are generically equal for $d \leq 7$ and $d=9$.

Theorem (Ballico-B-Oneto-Ventura)

The strength and slice rank of a homogeneous polynomial of degree d are generically equal for $d \geq 5$.

Generic and maximal strength

We consider

$$
\left\{g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r} \mid \operatorname{deg}\left(g_{i}\right)=a_{i}, \operatorname{deg}\left(h_{i}\right)=d-a_{i}\right\}
$$

inside $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$. We want to know the dimension.

Terracini's Lemma

This dimension equals the dimension of $\left(g_{1}, h_{1}, \ldots, g_{r}, h_{r}\right)_{d}$ for generic generators.

Proposition

This dimension is at most

$$
\binom{n+d}{d}-\operatorname{coeff}_{d}\left(\frac{\prod_{i=1}^{r}\left(1-t^{a_{i}}\right)\left(1-t^{d-a_{i}}\right)}{(1-t)^{n+1}}\right)+\binom{\ell_{d / 2}}{2}
$$

where $\ell_{d / 2}:=\#\left\{i \mid a_{i}=d / 2\right\}$. Equality when all a_{i} equal to 1 .

Generic and maximal strength

For fixed d, r, we want $F\left(a_{1}, \ldots, a_{r}\right):=$

$$
\operatorname{coeff}_{d}\left(\frac{\prod_{i=1}^{r}\left(1-t^{a_{i}}\right)\left(1-t^{d-a_{i}}\right)}{(1-t)^{n+1}}\right)-\binom{\ell_{d / 2}}{2}
$$

to be minimal when all a_{i} equal to 1 .
Write $c_{\ell}\left(k_{1}, \ldots, k_{n}\right):=\operatorname{coeff}_{\ell}\left(P_{k_{1}} \cdots P_{k_{n}}\right) \geq 0$ where $P_{k}=1+t+\ldots+t^{\bar{k}}$
for $k \in\{0,1,2, \ldots\} \cup\{\infty\}$.

Proposition

We have

- $c_{\ell}\left(k_{1}, \ldots, k_{n}\right)=c_{\ell}\left(k_{\sigma(1)}, \ldots, k_{\sigma(n)}\right)$ for all $\sigma \in S_{n}$
- $c_{\ell}\left(k_{1}, \ldots, k_{n}, 0\right)=c_{\ell}\left(k_{1}, \ldots, k_{n}\right)$
- $c_{\ell}\left(k, k_{2}, \ldots, k_{n}\right) \geq c_{\ell}\left(k^{\prime}, k_{2}, \ldots, k_{n}\right)$ for all $0 \leq k^{\prime} \leq k \leq \infty$
- $c_{\ell+1}\left(k_{1}, \ldots, k_{n}\right) \geq c_{\ell}\left(k_{1}, \ldots, k_{n}\right)$ when $k_{1}=\infty$

Generic and maximal strength

Proposition

We have

$$
F\left(a_{1}, \ldots, a_{r}\right)-F\left(a_{1}, \ldots, a_{r-1}, a_{r}-1\right)>0
$$

when $a_{r}=\theta:=\max \left\{a_{1}, \ldots, a_{r}\right\}>2$.

Proof.

Write $\ell_{j}=\#\left\{i \mid a_{i}=j\right\}$ and $m=n-\ell_{1}$. The difference equals

$$
c_{d-\theta+1}\left(\infty^{n-r}, d-2 \theta, a_{1}-1, \ldots, a_{r-1}-1\right)-\ell_{\theta-1}-\left(\ell_{\theta}-1\right) m
$$

We have

$$
\begin{aligned}
& c_{d-\theta+1}\left(\infty^{n-r}, d-2 \theta, a_{1}-1, \ldots, a_{r-1}-1\right) \\
\geq & c_{\theta+1}\left(\infty^{n-r}, 0^{\ell_{1}+1}, 1^{r-\ell_{1}-\ell_{\theta}},(\theta-1)^{\ell_{\theta}-1}\right) \\
\geq & c_{\theta+1}\left(\infty, 1^{m-\ell_{\theta}-1},(\theta-1)^{\ell_{\theta}-1}\right)=\operatorname{coeff}_{\theta+1}\left(P_{\infty} P_{1}^{m-\ell_{\theta}-1} P_{\theta-1}^{\ell_{\theta}-1}\right) \\
= & \operatorname{coeff}_{\theta+1}\left(P_{\infty}^{\ell_{\theta}} P_{1}^{m-\ell_{\theta}-1}\left(1-t^{\theta}\right)^{\ell_{\theta}-1}\right) \\
= & \operatorname{coeff}_{\theta+1}\left(P_{\infty}^{\ell_{\theta}} P_{1}^{m-\ell_{\theta}-1}\right)-\left(\ell_{\theta}-1\right)(m-1) \\
\geq & \operatorname{coeff}_{4}\left(P_{\infty}^{\ell_{\theta}} P_{1}^{m-\ell_{\theta}-1}\right)-\left(\ell_{\theta}-1\right)(m-1)
\end{aligned}
$$

Strength of polynomials

Q: How do you compute the strength of a polynomial?
Q: Is there an algorithm that computes best low-strength approximations of a polynomial?

Q: What is the highest possible strength of a limit of strength $\leq k$ polynomials?

Thanks for your attention!

References

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura The set of forms with bounded strength is not closed preprint

Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura Strength and slice rank of forms are generically equal preprint

围 Arthur Bik, Jan Draisma, Rob H. Eggermont
Polynomials and tensors of bounded strength
Commun. Contemp. Math. 21 (2019), no. 7, 1850062
David Kazhdan, Tamar Ziegler
Properties of high rank subvarieties of affine spaces Geometric and Functional Analysis 30 (2020), pp. 1063-1096

