Strength of infinite Polynomials

University of Michigan

April 6, 2023

Arthur Bik

Strength of polynomials

Definition

The strength of a homogeneous polynomial f of degree $d \geq 2$ is the minimal r such that

$$
f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

where $\operatorname{deg}\left(g_{i}\right), \operatorname{deg}\left(h_{i}\right)<d$.

Example

What is the strength of $f=x^{2}+y^{2}+z^{2}$?

- We have $\operatorname{str}(f) \leq 3$ since $f=x \cdot x+y \cdot y+z \cdot z$.
- We have $\operatorname{str}(f) \neq 0$ since $f \neq 0$.
- We have $\operatorname{str}(f) \neq 1$ since f is not reducible.
- $\operatorname{str}_{\mathbb{C}}(f)=2$ as $f=(x+i y) \cdot(x-i y)+z \cdot z$.
- $\operatorname{str}_{\mathbb{R}}(f)=3$ as $f=g_{1} h_{1}+g_{2} h_{2} \Rightarrow\left\{g_{1}, g_{2}=0\right\} \subseteq\{f=0\}$.

Scale of strength

Remark

Any $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ of degree $d \geq 2$ can be written as

$$
f=x_{1} \cdot h_{1}+x_{2} \cdot h_{2}+\ldots+x_{n} \cdot h_{n}
$$

and hence has strength $\leq n$.
Theorem (Harris)
For $d \geq 3$, any polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ can be written as

$$
\ell_{1} h_{1}+\ldots+\ell_{r} h_{r}
$$

with $\ell_{1}, \ldots, \ell_{r}$ linear, where $r \approx n-\sqrt[d-1]{d!n}$ is minimal such that

$$
r \geq \frac{1}{n-r}\binom{n-r+d-1}{d} .
$$

Theorem (Ballico-B-Oneto-Ventura)

A generic polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ has strength r.

Computing the strength of a polynomial IAS

Consider $f=x_{1}^{d}+\ldots+x_{n}^{d}$.
We have
$f= \begin{cases}\left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{d}+x_{2 k}^{d}\right) & \text { if } n=2 k \\ \left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{d}+x_{2 k}^{d}\right)+x_{2 k+1}^{d} & \text { if } n=2 k+1\end{cases}$
and so $\operatorname{str}(f) \leq\lceil n / 2\rceil$.
We have

$$
\begin{aligned}
\operatorname{Sing}(f) & =\left\{\partial f / \partial x_{1}=\ldots=\partial f / \partial x_{n}=0\right\} \\
& =\left\{d x_{1}^{d-1}=\ldots=d x_{n}^{d-1}=0\right\}=\{(0, \ldots, 0)\} \subseteq \mathbb{C}^{n}
\end{aligned}
$$

If $f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}$, then

$$
\left\{g_{1}, h_{1}, \ldots, g_{r}, h_{r}=0\right\} \subseteq \operatorname{Sing}(f)
$$

So $\operatorname{str}(f) \geq\lceil n / 2\rceil$.

Universality

Let $f \in K\left[x_{1}, \ldots, x_{n}\right]_{d}$ and $\ell_{1}, \ldots, \ell_{n}$ be linear forms in y_{1}, \ldots, y_{m}.
The polynomial

$$
f\left(\ell_{1}, \ldots, \ell_{n}\right) \in K\left[y_{1}, \ldots, y_{m}\right]_{d}
$$

is a coordinate transform of f.
Let \mathcal{P} be a property of degree- d polynomials such that f has $\mathcal{P} \Rightarrow$ every coordinate transform of f has \mathcal{P}
Example
$\mathcal{P}=$ "is a limit of strength $-r$ polynomials over \bar{K} "
Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)
Either all f have \mathcal{P} or there exists a $k \geq 0$ such that

$$
f \text { has } \mathcal{P} \Rightarrow \operatorname{str}(f) \leq k
$$

Adage

Infinite-strength polynomials behave simpler than high-strength polynomials.

Definition

The collective strength of a collection $\left(f_{1}, \ldots, f_{k}\right)$ is the minimal strength of its (nontrivial) linear combinations.

Theorem (Ananyan-Hochster)

For every collection $\left(d_{1}, \ldots, d_{k}\right)$ of degrees ≥ 1, there exists a constant C such that if $\operatorname{deg}\left(f_{i}\right)=d_{i}$ for all $i \in\{1, \ldots, k\}$ and $\operatorname{str}\left(f_{1}, \ldots, f_{k}\right) \geq C$, then $\left(f_{1}, \ldots, f_{k}\right)$ forms a regular sequence.

For $d \geq 1$, we define

$$
S_{\infty}^{d}=\left\{\sum_{1 \leq i_{1} \leq \cdots \leq i_{d}} a_{i_{1} \cdots i_{d}} x_{i_{1}} \cdots x_{i_{d}} \mid a_{i_{1} \cdots i_{d}} \in \mathbb{C}\right\}
$$

to be the set of degree-d polynomial series.
Now $S_{\infty}=\bigoplus_{d \geq 0} S_{\infty}^{d} \supsetneq \mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ is a ring.
Theorem (Erman-Sam-Snowden)
The ring S_{∞} is a polynomial ring.

Idea of the proof

For every degree $d \geq 1$, take a basis of S_{∞}^{d} modulo finite strength. The basis elements are the variables.

Example

The polynomial series $x_{1}^{d}+x_{2}^{d}+\ldots$ has infinite strength, since

$$
\operatorname{str}\left(x_{1}^{d}+x_{2}^{d}+\ldots\right) \geq \operatorname{str}\left(x_{1}^{d}+x_{2}^{d}+\ldots+x_{n}^{d}\right)=\lceil n / 2\rceil
$$

for all $n \geq 1$.

Example

The tuple

$$
\left(x_{1}^{d}+x_{5}^{d}+\ldots, x_{2}^{d}+x_{6}^{d}+\ldots, x_{3}^{d}+x_{7}^{d}+\ldots, x_{4}^{d}+x_{8}^{d}+\ldots\right)
$$

has infinite collective strength, since any nontrivial linear combination looks like the previous example.

Is bounded strength closed?

Theorem

For every $k \geq 0$, the set $\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\right\}$ is closed.

Question

What about $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \operatorname{str}(f) \leq k\right\}$?
For $k=1$, yes.
For $k=2$, probably.
For $d=2$, yes. (rank of symmetric matrices)
For $d=3$, yes. (slice rank of polynomials)
Theorem (Ballico-B-Oneto-Ventura)
The set $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{4} \mid \operatorname{str}(f) \leq 3\right\}$ is not closed for $n \gg 0$.

A class of potential counterexamples

We have

$$
\begin{aligned}
0 & =a^{2}-b^{2}-(a+b)(a-b) \\
& =x^{2} \cdot y^{2}-u^{2} \cdot v^{2}-(x y+u v) \cdot(x y-u v)
\end{aligned}
$$

for $a=x y$ and $b=u v$.
Consider
$\frac{1}{t}\left(\left(x^{2}+t g\right)\left(y^{2}+t f\right)-\left(u^{2}-t q\right)\left(v^{2}-t p\right)-(x y-u v)(x y+u v)\right)$
for f, g, q, p of degree 2 . For $t \rightarrow 0$, we get
Idea

$$
2 \boldsymbol{f}, 2,2 \ldots, 2
$$

Choose f, g, p, q such that $\operatorname{str}\left(x^{2} f+y^{2} g+u^{2} p+v^{2} q\right)=4$.

How?

Let (f, g, p, q) have infinite collective strength.

A counterexample in the infinite setting IAS

Proposition

We have

$$
\operatorname{str}\left(x^{2} f+y^{2} g+u^{2} p+v^{2} q\right)=4
$$

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq g_{1} \cdot h_{1}+g_{2} \cdot h_{2}+g_{3} \cdot h_{3}
$$

for all $g_{i}, h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{2}$. Write

$$
g_{i}=G_{i}+\hat{g}_{i} \text { and } h_{i}=H_{i}+\hat{h}_{i}
$$

where $G_{i}, H_{i} \in \mathbb{C}[f, g, p, q]$ and $\hat{g}_{i}, \hat{h}_{i} \in \mathbb{C}[x, y, u, v]$. Then

$$
\left\langle G_{1}, H_{1}, G_{2}, H_{2}, G_{3}, H_{3}\right\rangle=\langle f, g, p, q\rangle
$$

Now set $x, y, u, v=0$.

A counterexample in the infinite setting IAS

We get

$$
G_{1} \cdot H_{1}+G_{2} \cdot H_{2}+G_{3} \cdot H_{3}=0
$$

for linear forms G_{i}, H_{i} in f, g, p, q that span $\langle f, g, p, q\rangle$.
After relabelling, we may assume that either

$$
\left\langle G_{1}, H_{1}, G_{2}, H_{2}\right\rangle=\langle f, g, p, q\rangle \text { or }\left\langle G_{1}, H_{1}, G_{2}, G_{3}\right\rangle=\langle f, g, p, q\rangle
$$

(a) Write $\left(G_{1}, H_{1}, G_{2}, H_{2}\right)=(X, Y, U, V)$. Then we get

$$
X Y+U V=-G_{3} \cdot H_{3}
$$

which cannot happen as $X Y+U V$ is irreducible.
(b) Write $\left(G_{1}, H_{1}, G_{2}, G_{3}\right)=(X, Y, U, V)$. Then we get

$$
X Y+U H_{2}+V H_{3}=0
$$

which cannot happen when we set $U, V=0$.

A counterexample in the finite setting

We now know that

$$
\begin{aligned}
& \qquad x^{2} \sum_{i=1}^{\infty} x_{4 i+1}^{2}+y^{2} \sum_{i=1}^{\infty} x_{4 i+2}^{2}+u^{2} \sum_{i=1}^{\infty} x_{4 i+3}^{2}+v^{2} \sum_{i=1}^{\infty} x_{4 i+4}^{2} \\
& \text { has strength 4. }
\end{aligned}
$$

Theorem (Lang)

Let \mathcal{C} be a countable collection of polynomial equations over an uncountable field. Suppose that every finite $\mathcal{F} \subseteq \mathcal{C}$ has a solution. Then \mathcal{C} has a solution.

Corollary

The strength of

$$
x^{2} \sum_{i=1}^{n} x_{4 i+1}^{2}+y^{2} \sum_{i=1}^{n} x_{4 i+2}^{2}+u^{2} \sum_{i=1}^{n} x_{4 i+3}^{2}+v^{2} \sum_{i=1}^{n} x_{4 i+4}^{2}
$$

equals 4 for $n \gg 0$.

The lattice of infinite-strength polynomials IAS

What does a coordinate transform mean in the infinite setting?
Non-example
Take $f=x_{1}+x_{2}+\ldots$ and set $x_{i} \mapsto x_{1}$ for all $i \in \mathbb{N}$.

Definition

Let $f \in S_{\infty}^{d}$. Then a coordinate transform of f is

$$
f\left(\ell_{1}, \ell_{2}, \ldots\right) \in S_{\infty}^{d}
$$

where $\ell_{1}, \ell_{2}, \ldots$ are linear forms in x_{1}, x_{2}, \ldots so that every variable x_{i} only appears in finitely many linear forms ℓ_{j}.

Why does this work?
Suppose you want to know the coefficient of $x_{i_{1}} \cdots x_{i_{d}}$ in $f\left(\ell_{1}, \ell_{2}, \ldots\right)$. Let k be such that $x_{i_{1}}, \ldots, x_{i_{d}}$ only appear in $\ell_{1}, \ldots, \ell_{k}$ and consider $f\left(\ell_{1}, \ldots, \ell_{k}, 0, \ldots\right)$.

The lattice of infinite-strength polynomials IAS

Question

What is the structure of the set of infinite-strength degree- d polynomials up to coordinate transformation?

Example

For $d=1$, everything is equivalent to x_{1}.

Proposition

For $d=2$, everything is equivalent to $x_{1}^{2}+x_{2}^{2}+\ldots$
Proof.
Infinite degree-2 polynomials f are the same as infinite symmetric matrices A. A coordinate transform of A is $P^{\top} A P$ where P is an infinite matrix where every column has only finitely many nonzero entries. The polynomial f has infinite strength if and only if A has infinite rank. Now start diagonalizing...

The lattice of infinite-strength polynomials IAS

We focus on degree $d=3$.
Replace x_{1}, x_{2}, \ldots by different countable set of variables when convenient.

Example

Every partial derivative $\partial f / \partial x_{i}$ of

$$
f=x_{1}^{3}+x_{2}^{3}+\ldots
$$

has finite strength. Same for all its coordinate transforms:

$$
\frac{\partial}{\partial x_{i}} f\left(\ell_{1}, \ell_{2}, \ldots\right)=\sum_{j=1}^{\infty} \frac{\partial f}{\partial x_{j}}\left(\ell_{1}, \ell_{2}, \ldots\right) \cdot \frac{\partial \ell_{j}}{\partial x_{i}}
$$

is in fact a finite sum. So

$$
x\left(y_{1}^{2}+y_{2}^{2}+\ldots\right)+z_{1}^{3}+z_{2}^{3}+\ldots
$$

is not a coordinate transform of f.

Residual rank

Definition

The residual rank of $f \in S_{\infty}^{d}$ is

$$
\operatorname{rrk}(f)=\operatorname{dim} \operatorname{span}\left\{\left.\frac{\partial}{\partial x_{i}} f \bmod F^{d-1} \right\rvert\, i \in \mathbb{N}\right\}
$$

where $F^{d-1} \subseteq S_{\infty}^{d-1}$ is the subspace of finite-strength elements.

Theorem (B-Danelon-Snowden)

The map rrk is an isomorphism between the poset of infinite-strength degree- 3 polynomials and $\{0\} \cup \mathbb{N} \cup\{\infty\}$. Idea of the proof
If $r=\operatorname{rrk}(f)<\infty$, show that
$f \simeq x_{1}\left(y_{11}^{2}+y_{12}^{2}+\ldots\right)+\ldots+x_{r}\left(y_{r 1}^{2}+y_{r 2}^{2}+\ldots\right)+z_{1}^{3}+z_{2}^{3}+\ldots$
If $\operatorname{rrk}(f)=\infty$, show that

$$
f \simeq x_{1}\left(y_{11}^{2}+y_{12}^{2}+\ldots\right)+x_{2}\left(y_{21}^{2}+y_{22}^{2}+\ldots\right)+\ldots
$$

Assume $r=\operatorname{rrk}(f)<\infty$. First put f in standard form:

$$
f \simeq x_{1} g_{1}+\ldots+x_{r} g_{r}+h
$$

with $\left(g_{1}, \ldots, g_{r}, h\right)$ of infinite collective strength and $\operatorname{rrk}(h)=0$.
We can write

$$
\frac{\partial f}{\partial x_{i}} \equiv c_{1 i} g_{1}+\ldots+c_{r i} g_{r} \text { mod finite strength }
$$

for some $g_{1}, \ldots, g_{r} \in S_{\infty}^{2}$ and $c_{1}, \ldots, c_{r} \in S_{\infty}^{1}$.
As $\operatorname{rrk}(f)=r$, we see that $\left(g_{1}, \ldots, g_{r}\right)$ has infinite collective strength and c_{1}, \ldots, c_{r} are linearly independent. Using r variables substitutions, we can assume that $c_{j}=x_{j}$.
Now $h=f-\left(x_{1} g_{1}+\ldots+x_{r} g_{r}\right)$ has $\operatorname{str}(h)=\infty$ and $\operatorname{rrk}(h)=0$.

Assume that f in standard form:

$$
f=x_{1} g_{1}+\ldots+x_{r} g_{r}+h
$$

with $\left(g_{1}, \ldots, g_{r}, h\right)$ of infinite collective strength and $\operatorname{rrk}(h)=0$.

Goal

Show that $\left(g_{1}, \ldots, g_{r}, h\right)$ is equivalent to $\left(\hat{g}_{1}, \ldots, \hat{g}_{r}, \hat{h}\right)=$

$$
\left(x_{r+1}^{2}+x_{2 r+2}^{2}+\ldots, \ldots, x_{2 r}^{2}+x_{3 r+1}^{2}+\ldots, x_{2 r+1}^{3}+x_{3 r+2}^{3}+\ldots\right)
$$

Recursion

Assume that for $k \geq n$ we have chosen linear forms $\ell_{1}, \ldots, \ell_{k}$ in x_{1}, \ldots, x_{n} such that

$$
\begin{aligned}
g_{i}\left(\ell_{1}, \ldots, \ell_{k}, 0, \ldots\right) & =\hat{g}_{i}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right), \quad i \in\{1, \ldots, r\}, \\
h\left(\ell_{1}, \ldots, \ell_{k}, 0, \ldots\right) & =\hat{h}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)
\end{aligned}
$$

We want to increase n (and k).

Take $\hat{g}_{i}^{(n)}:=\hat{g}_{i}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$ and $\hat{h}^{(n)}:=\hat{h}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$
We have

$$
\begin{aligned}
& g_{i}\left(\ell_{1}, \ldots, \ell_{k}, x_{k+1}, \ldots\right)=\hat{g}_{i}^{(n)}+\sum_{j=1}^{n} x_{j} a_{i j}+\bar{g}_{i} \\
& h\left(\ell_{1}, \ldots, \ell_{k}, x_{k+1}, \ldots\right)=\hat{h}^{(n)}+\sum_{j=1}^{n} x_{j} f_{j}+\sum_{1 \leq u \leq v \leq n}^{n} x_{u} x_{v} b_{u v}+\bar{h}
\end{aligned}
$$

where $a_{i j}, b_{u v}, \bar{g}_{i}, f_{j}, \bar{h}$ only use x_{k+1}, x_{k+2}, \ldots
Now, we want to choose linear forms $\ell_{k+1}, \ldots, \ell_{k^{\prime}}$ in x_{n+1} with

$$
\begin{aligned}
a_{i j}\left(\ell_{k+1}, \ldots, \ell_{k^{\prime}}, 0, \ldots\right) & =0 \\
b_{u v}\left(\ell_{k+1}, \ldots, \ell_{k^{\prime}}, 0, \ldots\right) & =0 \\
\bar{g}_{i}\left(\ell_{k+1}, \ldots, \ell_{k^{\prime}}, 0, \ldots\right) & =\lambda_{i j} \cdot x_{n+1}^{2} \\
f_{j}\left(\ell_{k+1}, \ldots, \ell_{k^{\prime}}, 0, \ldots\right) & =0 \\
\bar{h}\left(\ell_{k+1}, \ldots, \ell_{k^{\prime}}, 0, \ldots\right) & =\mu_{i} \cdot x_{n+1}^{3}
\end{aligned}
$$

Take $\hat{g}_{i}^{(n)}:=\hat{g}_{i}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$ and $\hat{h}^{(n)}:=\hat{h}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$
We have

$$
\begin{aligned}
& g_{i}\left(\ell_{1}, \ldots, \ell_{k}, x_{k+1}, \ldots\right)=\hat{g}_{i}^{(n)}+\sum_{j=1}^{n} x_{j} a_{i j}+\bar{g}_{i} \\
& h\left(\ell_{1}, \ldots, \ell_{k}, x_{k+1}, \ldots\right)=\hat{h}^{(n)}+\sum_{j=1}^{n} x_{j} f_{j}+\sum_{1 \leq u \leq v \leq n}^{n} x_{u} x_{v} b_{u v}+\bar{h}
\end{aligned}
$$

where $a_{i j}, b_{u v}, \bar{g}_{i}, f_{j}, \bar{h}$ only use x_{k+1}, x_{k+2}, \ldots
Now, we want to choose constants $c_{k+1}, \ldots, c_{k^{\prime}} \in \mathbb{C}$ with

$$
\begin{aligned}
a_{i j}\left(c_{k+1}, \ldots, c_{k^{\prime}}, 0, \ldots\right) & =0 \\
b_{u v}\left(c_{k+1}, \ldots, c_{k^{\prime}}, 0, \ldots\right) & =0 \\
\bar{g}_{i}\left(c_{k+1}, \ldots, c_{k^{\prime}}, 0, \ldots\right) & =\lambda_{i j} \\
f_{j}\left(c_{k+1}, \ldots, c_{k^{\prime}}, 0, \ldots\right) & =0 \\
\bar{h}\left(c_{k+1}, \ldots, c_{k^{\prime}}, 0, \ldots\right) & =\mu_{i}
\end{aligned}
$$

The lattice of infinite-strength polynomials IAS

Question

What about degree 4?
Assume $r=\operatorname{rrk}(f)<\infty$. Then we can put f in standard form

$$
f \simeq x_{1} g_{1}+\ldots+x_{r} g_{r}+h
$$

with $\left(g_{1}, \ldots, g_{r}, h\right)$ of infinite collective strength and $\operatorname{rrk}(h)=0$.

Definition

The second residual rank of $f \in S_{\infty}^{d}$ is

$$
\operatorname{rrk}^{(2)}(f)=\operatorname{dim} \operatorname{span}\left\{\left.\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f \bmod F^{d-2} \right\rvert\, i, j \in \mathbb{N}\right\}
$$

where $F^{d-2} \subseteq S_{\infty}^{d-2}$ is the subspace of finite-strength elements.

Question

Can we seperate the second-order content from the part that has infinite strength?

Thank you for your attention!

