Strength of infinite Polynomials

University of Michigan

April 6, 2023

Arthur Bik

 $IAS \stackrel{\text{institute for}}{ \text{advanced study} }$

Definition

The strength of a homogeneous polynomial f of degree $d \geq 2$ is the minimal r such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

where $\deg(g_i), \deg(h_i) < d$.

Example

What is the strength of $f = x^2 + y^2 + z^2$?

- We have $\operatorname{str}(f) \leq 3$ since $f = x \cdot x + y \cdot y + z \cdot z$.
- We have $str(f) \neq 0$ since $f \neq 0$.
- We have $str(f) \neq 1$ since f is not reducible.
- $\operatorname{str}_{\mathbb{C}}(f) = 2$ as $f = (x + iy) \cdot (x iy) + z \cdot z$.
- $\operatorname{str}_{\mathbb{R}}(f) = 3$ as $f = g_1 h_1 + g_2 h_2 \Rightarrow \{g_1, g_2 = 0\} \subseteq \{f = 0\}.$

IAS AVANCED STUDY

Remark

Any $f\in \mathbb{C}[x_1,\ldots,x_n]_d$ of degree $d\geq 2$ can be written as

$$f = x_1 \cdot h_1 + x_2 \cdot h_2 + \ldots + x_n \cdot h_n$$

and hence has strength $\leq n$.

Theorem (Harris)

For $d\geq 3$, any polynomial in $\mathbb{C}[x_1,\ldots,x_n]_d$ can be written as $\ell_1h_1+\ldots+\ell_rh_r$

with ℓ_1,\ldots,ℓ_r linear, where $r\approx n-\sqrt[d-1]{d!n}$ is minimal such that

$$r \ge \frac{1}{n-r} \binom{n-r+d-1}{d}.$$

Theorem (Ballico-B-Oneto-Ventura)

A generic polynomial in $\mathbb{C}[x_1, \ldots, x_n]_d$ has strength r.

IAS INSTITUTE FOR

Computing the strength of a polynomial $~IAS~^{\mbox{\tiny IASTUDY}}$

Consider
$$f = x_1^d + \ldots + x_n^d$$
.

We have

$$f = \begin{cases} (x_1^d + x_2^d) + \ldots + (x_{2k-1}^d + x_{2k}^d) & \text{if } n = 2k\\ (x_1^d + x_2^d) + \ldots + (x_{2k-1}^d + x_{2k}^d) + x_{2k+1}^d & \text{if } n = 2k+1 \end{cases}$$

and so $\operatorname{str}(f) \le \lceil n/2 \rceil$.

We have

$$\begin{aligned} \operatorname{Sing}(f) &= \{\partial f / \partial x_1 = \ldots = \partial f / \partial x_n = 0\} \\ &= \{dx_1^{d-1} = \ldots = dx_n^{d-1} = 0\} = \{(0, \ldots, 0)\} \subseteq \mathbb{C}^n \\ \text{If } f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r, \text{ then} \\ &\{g_1, h_1, \ldots, g_r, h_r = 0\} \subseteq \operatorname{Sing}(f) \\ \text{So } \operatorname{str}(f) \geq \lceil n/2 \rceil. \end{aligned}$$

Universality

Let $f \in K[x_1, \ldots, x_n]_d$ and ℓ_1, \ldots, ℓ_n be linear forms in y_1, \ldots, y_m . The polynomial

$$f(\ell_1,\ldots,\ell_n) \in K[y_1,\ldots,y_m]_d$$

is a coordinate transform of f.

Let \mathcal{P} be a property of degree-d polynomials such that

 $f \text{ has } \mathcal{P} \Rightarrow \text{every coordinate transform of } f \text{ has } \mathcal{P}$ **Example**

 $\mathcal{P} =$ "is a limit of strength-r polynomials over \overline{K} "

Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont) Either all f have \mathcal{P} or there exists a $k \ge 0$ such that

 $f \text{ has } \mathcal{P} \Rightarrow \operatorname{str}(f) \le k$

IAS INSTITUTE FOR

Adage

Infinite-strength polynomials behave simpler than high-strength polynomials.

Definition

The *collective strength* of a collection (f_1, \ldots, f_k) is the minimal strength of its (nontrivial) linear combinations.

Theorem (Ananyan-Hochster)

For every collection (d_1, \ldots, d_k) of degrees ≥ 1 , there exists a constant C such that if $\deg(f_i) = d_i$ for all $i \in \{1, \ldots, k\}$ and $\operatorname{str}(f_1, \ldots, f_k) \geq C$, then (f_1, \ldots, f_k) forms a regular sequence.

IAS INSTITUTE FO

For $d \geq 1$, we define

$$S_{\infty}^{d} = \left\{ \sum_{1 \leq i_{1} \leq \dots \leq i_{d}} a_{i_{1} \cdots i_{d}} x_{i_{1}} \cdots x_{i_{d}} \middle| a_{i_{1} \cdots i_{d}} \in \mathbb{C} \right\}$$

to be the set of degree-d polynomial series.

Now
$$S_{\infty} = \bigoplus_{d \ge 0} S_{\infty}^d \supseteq \mathbb{C}[x_1, x_2, \ldots]$$
 is a ring.

Theorem (Erman-Sam-Snowden)

The ring S_{∞} is a polynomial ring.

Idea of the proof

For every degree $d \ge 1$, take a basis of S^d_{∞} modulo finite strength. The basis elements are the variables.

Example

The polynomial series $x_1^d + x_2^d + \dots$ has infinite strength, since

$$\operatorname{str}(x_1^d + x_2^d + \ldots) \ge \operatorname{str}(x_1^d + x_2^d + \ldots + x_n^d) = \lceil n/2 \rceil$$

for all $n \ge 1$.

Example

The tuple

 $(x_1^d + x_5^d + \dots, x_2^d + x_6^d + \dots, x_3^d + x_7^d + \dots, x_4^d + x_8^d + \dots)$

has infinite collective strength, since any nontrivial linear combination looks like the previous example.

Theorem

For every $k \ge 0$, the set $\{A \in \mathbb{C}^{n \times m} \mid \mathrm{rk}(A) \le k\}$ is closed.

Question

What about $\{f \in \mathbb{C}[x_1, \ldots, x_n]_d \mid \operatorname{str}(f) \leq k\}$?

For k = 1, yes. For k = 2, probably. For d = 2, yes. (rank of symmetric matrices) For d = 3, yes. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)

The set $\{f \in \mathbb{C}[x_1, \dots, x_n]_4 \mid \operatorname{str}(f) \leq 3\}$ is not closed for $n \gg 0$.

A class of potential counterexamples

IAS ADVANCED STUDY

We have

$$0 = a^{2} - b^{2} - (a + b)(a - b)$$

= $x^{2} \cdot y^{2} - u^{2} \cdot v^{2} - (xy + uv) \cdot (xy - uv)$

for a = xy and b = uv.

Consider

$\frac{1}{t} \left((x^2 + tg)(y^2 + tf) - (u^2 - tq)(v^2 - tp) - (xy - uv)(xy + uv) \right)$ for f, g, q, p of degree 2. For $t \to 0$, we get

Idea

Choose f, g, p, q such that $str(x^2f + y^2g + u^2p + v^2q) = 4$.

How?

Let (f, g, p, q) have infinite collective strength.

Proposition

We have

$$str(x^{2}f + y^{2}g + u^{2}p + v^{2}q) = 4$$

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2.

1/4 of the proof

We need to show, for example, that

$$\begin{split} x^2f + y^2g + u^2p + v^2q \neq g_1 \cdot h_1 + g_2 \cdot h_2 + g_3 \cdot h_3 \\ \text{for all } g_i, h_i \in \mathbb{C}[x, y, u, v, f, g, p, q]_2. \text{ Write} \\ g_i = G_i + \hat{g}_i \text{ and } h_i = H_i + \hat{h}_i \\ \text{where } G_i, H_i \in \mathbb{C}[f, g, p, q] \text{ and } \hat{g}_i, \hat{h}_i \in \mathbb{C}[x, y, u, v]. \text{ Then} \\ \langle G_1, H_1, G_2, H_2, G_3, H_3 \rangle = \langle f, g, p, q \rangle \end{split}$$

Now set x, y, u, v = 0.

We get

$$G_1 \cdot H_1 + G_2 \cdot H_2 + G_3 \cdot H_3 = 0$$

for linear forms G_i, H_i in f, g, p, q that span $\langle f, g, p, q \rangle$.

After relabelling, we may assume that either

 $\langle G_1, H_1, G_2, H_2 \rangle = \langle f, g, p, q \rangle$ or $\langle G_1, H_1, G_2, G_3 \rangle = \langle f, g, p, q \rangle$

(a) Write $(G_1, H_1, G_2, H_2) = (X, Y, U, V)$. Then we get

$$XY + UV = -G_3 \cdot H_3$$

which cannot happen as XY + UV is irreducible.

(b) Write $(G_1, H_1, G_2, G_3) = (X, Y, U, V)$. Then we get

$$XY + UH_2 + VH_3 = 0$$

which cannot happen when we set U, V = 0.

Strength of infinite Polynomials

We now know that

$$x^{2} \sum_{i=1}^{\infty} x_{4i+1}^{2} + y^{2} \sum_{i=1}^{\infty} x_{4i+2}^{2} + u^{2} \sum_{i=1}^{\infty} x_{4i+3}^{2} + v^{2} \sum_{i=1}^{\infty} x_{4i+4}^{2}$$

has strength 4.

Theorem (Lang)

Let C be a countable collection of polynomial equations over an uncountable field. Suppose that every finite $\mathcal{F} \subseteq C$ has a solution. Then C has a solution.

Corollary

The strength of

$$x^2 \sum_{i=1}^n x_{4i+1}^2 + y^2 \sum_{i=1}^n x_{4i+2}^2 + u^2 \sum_{i=1}^n x_{4i+3}^2 + v^2 \sum_{i=1}^n x_{4i+4}^2$$
 equals 4 for $n \gg 0$.

IAS INSTITUTE FOR

The lattice of infinite-strength polynomials IAS $_{\tt advanced study}$

What does a coordinate transform mean in the infinite setting?

Non-example

Take
$$f = x_1 + x_2 + \ldots$$
 and set $x_i \mapsto x_1$ for all $i \in \mathbb{N}$.

Definition

Let $f \in S^d_{\infty}$. Then a *coordinate transform* of f is

$$f(\ell_1, \ell_2, \ldots) \in S^d_{\infty}$$

where ℓ_1, ℓ_2, \ldots are linear forms in x_1, x_2, \ldots so that every variable x_i only appears in finitely many linear forms ℓ_j .

Why does this work?

Suppose you want to know the coefficient of $x_{i_1} \cdots x_{i_d}$ in $f(\ell_1, \ell_2, \ldots)$. Let k be such that x_{i_1}, \ldots, x_{i_d} only appear in ℓ_1, \ldots, ℓ_k and consider $f(\ell_1, \ldots, \ell_k, 0, \ldots)$.

Question

What is the structure of the set of infinite-strength degree-d polynomials up to coordinate transformation?

Example

For d = 1, everything is equivalent to x_1 .

Proposition

For d = 2, everything is equivalent to $x_1^2 + x_2^2 + \dots$ **Proof.**

Infinite degree-2 polynomials f are the same as infinite symmetric matrices A. A coordinate transform of A is $P^{\top}AP$ where P is an infinite matrix where every column has only finitely many nonzero entries. The polynomial f has infinite strength if and only if A has infinite rank. Now start diagonalizing...

The lattice of infinite-strength polynomials IAS

We focus on degree d = 3.

Replace x_1, x_2, \ldots by different countable set of variables when convenient.

Example

Every partial derivative $\partial f/\partial x_i$ of

$$f = x_1^3 + x_2^3 + \dots$$

has finite strength. Same for all its coordinate transforms:

$$\frac{\partial}{\partial x_i} f(\ell_1, \ell_2, \ldots) = \sum_{j=1}^{\infty} \frac{\partial f}{\partial x_j} (\ell_1, \ell_2, \ldots) \cdot \frac{\partial \ell_j}{\partial x_i}$$

is in fact a finite sum. So

$$x(y_1^2 + y_2^2 + \ldots) + z_1^3 + z_2^3 + \ldots$$

is not a coordinate transform of f.

Definition

The *residual rank* of $f \in S^d_\infty$ is

$$\operatorname{rrk}(f) = \dim \operatorname{span} \left\{ \frac{\partial}{\partial x_i} f \mod F^{d-1} \, \middle| \, i \in \mathbb{N} \right\}$$

where $F^{d-1}\subseteq S^{d-1}_\infty$ is the subspace of finite-strength elements.

Theorem (B-Danelon-Snowden)

The map rrk is an isomorphism between the poset of infinite-strength degree-3 polynomials and $\{0\} \cup \mathbb{N} \cup \{\infty\}$. Idea of the proof

If $r = \operatorname{rrk}(f) < \infty$, show that

$$f \simeq x_1(y_{11}^2 + y_{12}^2 + \ldots) + \ldots + x_r(y_{r1}^2 + y_{r2}^2 + \ldots) + z_1^3 + z_2^3 + \ldots$$

If $\mathrm{rrk}(f)=\infty,$ show that

$$f \simeq x_1(y_{11}^2 + y_{12}^2 + \ldots) + x_2(y_{21}^2 + y_{22}^2 + \ldots) + \ldots$$

Strength of infinite Polynomials

Assume $r = \operatorname{rrk}(f) < \infty$. First put f in standard form:

$$f \simeq x_1 g_1 + \ldots + x_r g_r + h$$

with (g_1, \ldots, g_r, h) of infinite collective strength and $\operatorname{rrk}(h) = 0$.

We can write

$$\frac{\partial f}{\partial x_i} \equiv c_{1i}g_1 + \ldots + c_{ri}g_r \text{ mod finite strength}$$

for some $g_1, \ldots, g_r \in S^2_{\infty}$ and $c_1, \ldots, c_r \in S^1_{\infty}$.

As $\operatorname{rrk}(f) = r$, we see that (g_1, \ldots, g_r) has infinite collective strength and c_1, \ldots, c_r are linearly independent. Using r variables substitutions, we can assume that $c_j = x_j$.

Now
$$h = f - (x_1g_1 + \ldots + x_rg_r)$$
 has $str(h) = \infty$ and $rrk(h) = 0$.

Assume that f in standard form:

$$f = x_1g_1 + \ldots + x_rg_r + h$$

with (g_1, \ldots, g_r, h) of infinite collective strength and $\operatorname{rrk}(h) = 0$. Goal

Show that (g_1,\ldots,g_r,h) is equivalent to $(\hat{g}_1,\ldots,\hat{g}_r,\hat{h})=$

$$(x_{r+1}^2 + x_{2r+2}^2 + \dots, \dots, x_{2r}^2 + x_{3r+1}^2 + \dots, x_{2r+1}^3 + x_{3r+2}^3 + \dots)$$

Recursion

Assume that for $k\geq n$ we have chosen linear forms ℓ_1,\ldots,ℓ_k in x_1,\ldots,x_n such that

$$g_i(\ell_1, \dots, \ell_k, 0, \dots) = \hat{g}_i(x_1, \dots, x_n, 0, \dots), \quad i \in \{1, \dots, r\},$$
$$h(\ell_1, \dots, \ell_k, 0, \dots) = \hat{h}(x_1, \dots, x_n, 0, \dots)$$
We want to increase n (and k).

IAS INSTITUTE FOR

IAS INSTITUTE FOR ADVANCED STUDY

Take
$$\hat{g}_i^{(n)} := \hat{g}_i(x_1, \dots, x_n, 0, \dots)$$
 and $\hat{h}^{(n)} := \hat{h}(x_1, \dots, x_n, 0, \dots)$
We have

$$g_i(\ell_1,\ldots,\ell_k,x_{k+1},\ldots) = \hat{g}_i^{(n)} + \sum_{j=1}^n x_j a_{ij} + \overline{g}_i$$

$$h(\ell_1, \dots, \ell_k, x_{k+1}, \dots) = \hat{h}^{(n)} + \sum_{j=1}^n x_j f_j + \sum_{1 \le u \le v \le n}^n x_u x_v b_{uv} + \overline{h}$$

where $a_{ij}, b_{uv}, \overline{g}_i, f_j, \overline{h}$ only use x_{k+1}, x_{k+2}, \ldots

Now, we want to choose linear forms $\ell_{k+1},\ldots,\ell_{k'}$ in x_{n+1} with

$$\begin{aligned} a_{ij}(\ell_{k+1}, \dots, \ell_{k'}, 0, \dots) &= 0\\ b_{uv}(\ell_{k+1}, \dots, \ell_{k'}, 0, \dots) &= 0\\ \overline{g}_i(\ell_{k+1}, \dots, \ell_{k'}, 0, \dots) &= \lambda_{ij} \cdot x_{n+1}^2\\ f_j(\ell_{k+1}, \dots, \ell_{k'}, 0, \dots) &= 0\\ \overline{h}(\ell_{k+1}, \dots, \ell_{k'}, 0, \dots) &= \mu_i \cdot x_{n+1}^3 \end{aligned}$$

Strength of infinite Polynomials

IAS INSTITUTE FOR ADVANCED STUDY

Take
$$\hat{g}_i^{(n)} := \hat{g}_i(x_1, \dots, x_n, 0, \dots)$$
 and $\hat{h}^{(n)} := \hat{h}(x_1, \dots, x_n, 0, \dots)$
We have

$$g_i(\ell_1,\ldots,\ell_k,x_{k+1},\ldots) = \hat{g}_i^{(n)} + \sum_{j=1}^n x_j a_{ij} + \overline{g}_i$$

$$h(\ell_1, \dots, \ell_k, x_{k+1}, \dots) = \hat{h}^{(n)} + \sum_{j=1}^n x_j f_j + \sum_{1 \le u \le v \le n}^n x_u x_v b_{uv} + \overline{h}$$

where $a_{ij}, b_{uv}, \overline{g}_i, f_j, \overline{h}$ only use x_{k+1}, x_{k+2}, \ldots

Now, we want to choose constants $c_{k+1},\ldots,c_{k'}\in\mathbb{C}$ with

$$a_{ij}(c_{k+1}, \dots, c_{k'}, 0, \dots) = 0$$

$$b_{uv}(c_{k+1}, \dots, c_{k'}, 0, \dots) = 0$$

$$\overline{g}_i(c_{k+1}, \dots, c_{k'}, 0, \dots) = \lambda_{ij}$$

$$f_j(c_{k+1}, \dots, c_{k'}, 0, \dots) = 0$$

$$\overline{h}(c_{k+1}, \dots, c_{k'}, 0, \dots) = \mu_i$$

Question

What about degree 4?

Assume $r=\mathrm{rrk}(f)<\infty.$ Then we can put f in standard form $f\simeq x_1g_1+\ldots+x_rg_r+h$

with (g_1, \ldots, g_r, h) of infinite collective strength and $\operatorname{rrk}(h) = 0$. **Definition**

The second residual rank of $f \in S^d_\infty$ is

$$\operatorname{rrk}^{(2)}(f) = \operatorname{dim}\operatorname{span}\left\{\frac{\partial^2}{\partial x_i \partial x_j} f \, \operatorname{\mathsf{mod}}\, F^{d-2} \, \middle| \, i, j \in \mathbb{N}\right\}$$

where $F^{d-2}\subseteq S^{d-2}_\infty$ is the subspace of finite-strength elements.

Question

Can we seperate the second-order content from the part that has infinite strength?

Strength of infinite Polynomials

Thank you for your attention!