The monic rank and instances of Shapiro's Conjecture

Arthur Bik
University of Bern

j.w.w. Jan Draisma, Alessandro Oneto and Emanuele Ventura

MEGA 2019, Madrid, 20 June 2019

A Conjecture by Shapiro

Conjecture (Boris Shapiro)

Every homogeneous polynomial $f \in \mathbb{C}[x, y]$ of degree $d \cdot e$ is the sum of at most $d d$-th powers of polynomials of degree e.

A Conjecture by Shapiro

Conjecture (Boris Shapiro)

Every homogeneous polynomial $f \in \mathbb{C}[x, y]$ of degree $d \cdot e$ is the sum of at most $d d$-th powers of polynomials of degree e.

Why believe this?

- True when $e=1$, when $d=1$ and when $d=2$.
- The projective variety

$$
\left\{\left[h^{d}\right] \mid h \in \mathbb{C}[x, y]_{(e)}\right\} \subseteq \mathbb{P}\left(\mathbb{C}[x, y]_{(d \cdot e)}\right)
$$

has dimension e in a projective space of dimension $d \cdot e$.
\Rightarrow Its d-th secant variety is expected to be everything.

- True for $(d, e)=(3,2)$ by Lundqvist, Oneto, Reznick and Shapiro.

Example: $\{\operatorname{deg} d\}=\{$ sum of d-th powers of deg 1$\}$

Consider

$$
\begin{gathered}
\left(x+a_{1} y\right)^{d}+\left(x+a_{2} y\right)^{d}+\cdots+\left(x+a_{d} y\right)^{d} \\
= \\
d x^{d}+\binom{d}{1} b_{1} x^{d-1} y+\binom{d}{2} b_{2} x^{d-2} y^{2}+\cdots+\binom{d}{d} b_{d} y^{d}
\end{gathered}
$$

with $b_{k}=a_{1}^{k}+\cdots+a_{d}^{k}$.

Example: $\{\operatorname{deg} d\}=\{$ sum of d-th powers of deg 1$\}$

Consider

$$
\begin{gathered}
\left(x+a_{1} y\right)^{d}+\left(x+a_{2} y\right)^{d}+\cdots+\left(x+a_{d} y\right)^{d} \\
= \\
d x^{d}+\binom{d}{1} b_{1} x^{d-1} y+\binom{d}{2} b_{2} x^{d-2} y^{2}+\cdots+\binom{d}{d} b_{d} y^{d}
\end{gathered}
$$

with $b_{k}=a_{1}^{k}+\cdots+a_{d}^{k}$.
Fact (Hilbert): The map $\left(a_{1}, \ldots, a_{d}\right) \mapsto\left(b_{1}, \ldots, b_{d}\right)$ is a finite morphism.

Example: $\{\operatorname{deg} d\}=\{$ sum of d-th powers of deg 1$\}$

Consider

$$
\begin{gathered}
\left(x+a_{1} y\right)^{d}+\left(x+a_{2} y\right)^{d}+\cdots+\left(x+a_{d} y\right)^{d} \\
= \\
d x^{d}+\binom{d}{1} b_{1} x^{d-1} y+\binom{d}{2} b_{2} x^{d-2} y^{2}+\cdots+\binom{d}{d} b_{d} y^{d}
\end{gathered}
$$

with $b_{k}=a_{1}^{k}+\cdots+a_{d}^{k}$.
Fact (Hilbert): The map $\left(a_{1}, \ldots, a_{d}\right) \mapsto\left(b_{1}, \ldots, b_{d}\right)$ is a finite morphism.
Using coordinate transformations, this implies:

$$
\mathbb{C}[x, y]_{(d)}=\left\{\ell_{1}^{d}+\cdots+\ell_{d}^{d} \mid \ell_{1}, \ldots, \ell_{d} \in \mathbb{C}[x, y]_{(1)}\right\}
$$

The monic rank

- V a finite-dimensional vector space
- $X \subseteq V$ a non-degenerate irreducible Zariski-closed cone
- $h: V \rightarrow \mathbb{C}$ a non-zero linear function and $H=h^{-1}(1) \subseteq V$

Definition

The monic rank of a vector $v \in V \backslash h^{-1}(0)$ is the minimal r such that

$$
\frac{r}{h(v)} \cdot v=w_{1}+\cdots+w_{r}
$$

with $w_{1}, \ldots, w_{r} \in X \cap H$.
Theorem
monic rank $\leqslant 2 \cdot($ the generic monic rank $)<\infty$

\boldsymbol{u}^{b}

Shapiro's Conjecture (Monic Version)

Every $f \in \mathbb{C}[x, y]_{(d \cdot e)}$ with leading coefficient d has monic rank $\leqslant d$.
$X=\{d$-th powers of homogeneous polynomials of degree $e\}$

Shapiro's Conjecture (Monic Version)

Every $f \in \mathbb{C}[x, y]_{(d \cdot e)}$ with leading coefficient d has monic rank $\leqslant d$.
$X=\{d$-th powers of homogeneous polynomials of degree $e\}$
Goal: We want to show that

$$
\begin{aligned}
\prod_{i=1}^{d}\left\{f \in \mathbb{C}[x, y]_{(e)} \text { monic }\right\} & \rightarrow \mathbb{C}[x, y]_{(d \cdot e)} \\
\left(f_{1}, \ldots, f_{d}\right) & \mapsto
\end{aligned} f_{1}^{d}+\cdots+f_{d}^{d}
$$

is a finite morphism.

Shapiro's Conjecture (Monic Version)

Every $f \in \mathbb{C}[x, y]_{(d \cdot e)}$ with leading coefficient d has monic rank $\leqslant d$.
$X=\{d$-th powers of homogeneous polynomials of degree $e\}$
Goal: We want to show that

$$
\begin{aligned}
\prod_{i=1}^{d}\left\{f \in \mathbb{C}[x, y]_{(e)} \text { monic }\right\} & \rightarrow \mathbb{C}[x, y]_{(d \cdot e)} \\
\left(f_{1}, \ldots, f_{d}\right) & \mapsto
\end{aligned} f_{1}^{d}+\cdots+f_{d}^{d}
$$

is a finite morphism.
Proposition: This is true if $\left(c_{i j}\right)_{i j}=0$ is the only solution of the equation

$$
d x^{d e}=\sum_{i=1}^{d}\left(x^{e}+c_{i 1} x^{e-1} y+\cdots+c_{i e} y^{e}\right)^{d}
$$

Reduction to a Gröbner basis computation

Assume that $\left(c_{i j}\right)_{i j}$ satisfies

$$
d x^{d e}=\sum_{i=1}^{d}\left(x^{e}+c_{i 1} x^{e-1} y+\cdots+c_{i e} y^{e}\right)^{d}
$$

Reduction to a Gröbner basis computation

Assume that $\left(c_{i j}\right)_{i j}$ satisfies

$$
d x^{d e}=\sum_{i=1}^{d}\left(x^{e}+c_{i 1} x^{e-1} y+\cdots+c_{i e} y^{e}\right)^{d}
$$

Case 1
We have $c_{i e}=0$ for all i. Divide by x^{d}.
\leadsto This replaces e by $e-1$.

Reduction to a Gröbner basis computation

Assume that $\left(c_{i j}\right)_{i j}$ satisfies

$$
d x^{d e}=\sum_{i=1}^{d}\left(x^{e}+c_{i 1} x^{e-1} y+\cdots+c_{i e} y^{e}\right)^{d}
$$

Case 1
We have $c_{i e}=0$ for all i. Divide by x^{d}.
\leadsto This replaces e by $e-1$.

Case 2

After permuting summands and scaling y, we get $c_{1 e}=1$.
\leadsto A Gröbner basis can contradict this.

Reduction to a Gröbner basis computation

Assume that $\left(c_{i j}\right)_{i j}$ satisfies

$$
d x^{d e}=\sum_{i=1}^{d}\left(x^{e}+c_{i 1} x^{e-1} y+\cdots+c_{i e} y^{e}\right)^{d}
$$

Case 1
We have $c_{i e}=0$ for all i. Divide by x^{d}.
\leadsto This replaces e by $e-1$.

Case 2

After permuting summands and scaling y, we get $c_{1 e}=1$.
\leadsto A Gröbner basis can contradict this.
The computation finished for $(d, e)=(3,2),(3,3),(3,4),(4,2)$.

A Conjecture by Shapiro

Conjecture (Boris Shapiro)

Every homogeneous polynomial $f \in \mathbb{C}[x, y]$ of degree $d \cdot e$ is the sum of at most $d d$-th powers of polynomials of degree e.

Why believe this?

- True when $e=1$, when $d=1$ and when $d=2$.
- The projective variety

$$
\left\{\left[h^{d}\right] \mid h \in \mathbb{C}[x, y]_{(e)}\right\} \subseteq \mathbb{P}\left(\mathbb{C}[x, y]_{(d \cdot e)}\right)
$$

has dimension e in a projective space of dimension $d \cdot e$.
\Rightarrow Its d-th secant variety is expected to be everything.

- True for $(d, e)=(3,2)$ by Lundqvist, Oneto, Reznick and Shapiro.
- True for $(d, e)=(3,3),(3,4),(4,2)$.

Other examples of (monic) rank

Some other objects that have a rank:

- Matrices
- Symmetric matrices
- Trace-zero matrices
- Tensors

Other examples of (monic) rank

Some other objects that have a rank:

- Matrices
- Symmetric matrices
- Trace-zero matrices
- Tensors

Question: What should be their "leading coefficient"s?

Other examples of (monic) rank

Some other objects that have a rank:

- Matrices
- Symmetric matrices
- Trace-zero matrices
- Tensors

Question: What should be their "leading coefficient"s?
Natural choice: Let $h \in V^{*}$ be a highest weight vector.

Other examples of (monic) rank

Some other objects that have a rank:

- Matrices
(top-left entry)
- Symmetric matrices
- Trace-zero matrices (top-left entry) (top-right entry)
- Tensors (coefficient of $e_{1} \otimes \cdots \otimes e_{1}$)

Question: What should be their "leading coefficient"s?
Natural choice: Let $h \in V^{*}$ be a highest weight vector.

Other examples of (monic) rank

Some other objects that have a rank:

- Matrices
- Symmetric matrices
- Trace-zero matrices
- Tensors
(top-left entry)
(top-left entry)
(top-right entry)
(coefficient of $e_{1} \otimes \cdots \otimes e_{1}$)

Question: What should be their "leading coefficient"s?
Natural choice: Let $h \in V^{*}$ be a highest weight vector.
Question: How do the maximal rank and monic rank compare?

$2 \times 2 \times 2$ Tensors

The space of $2 \times 2 \times 2$ tensors:

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}=\left\{\left.\left(\begin{array}{ll|ll}
a_{11} & a_{12} & b_{11} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22}
\end{array}\right) \right\rvert\, a_{i j}, b_{i j} \in \mathbb{C}\right\}
$$

$2 \times 2 \times 2$ Tensors

The space of $2 \times 2 \times 2$ tensors:

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}=\left\{\left.\left(\begin{array}{ll|ll}
a_{11} & a_{12} & b_{11} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22}
\end{array}\right) \right\rvert\, a_{i j}, b_{i j} \in \mathbb{C}\right\}
$$

The tensors of rank $\leqslant 1$:

$$
X=\left\{\begin{array}{l|c}
(A \mid B) & \operatorname{rk}(A), \operatorname{rk}(B) \leqslant 1 \\
A, B \text { are linearly dependent }
\end{array}\right\}
$$

Fact: The maximal rank of a $2 \times 2 \times 2$ tensor is 3 .

$2 \times 2 \times 2$ Tensors

The space of $2 \times 2 \times 2$ tensors:

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}=\left\{\left.\left(\begin{array}{ll|ll}
a_{11} & a_{12} & b_{11} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22}
\end{array}\right) \right\rvert\, a_{i j}, b_{i j} \in \mathbb{C}\right\}
$$

The tensors of rank $\leqslant 1$:

$$
X=\left\{\begin{array}{c|c}
(A \mid B) & \operatorname{rk}(A), \operatorname{rk}(B) \leqslant 1 \\
A, B \text { are linearly dependent }
\end{array}\right\}
$$

Fact: The maximal rank of a $2 \times 2 \times 2$ tensor is 3 .
Let a_{11} be the leading coefficient. The maximal monic rank is $\geqslant 3$.
Question: Is the maximal monic rank equal to 3 ?

Orbits of tensors

We have 3 commuting actions of \mathbb{C} :

- $\left(v_{1} v_{2} \mid w_{1} w_{2}\right) \leadsto\left(v_{1} v_{2}+\lambda v_{1} \mid w_{1} w_{2}+\lambda w_{1}\right)$
- $\left(\begin{array}{l|l}r_{1} & s_{1} \\ r_{2} & s_{2}\end{array}\right) \leadsto\left(\begin{array}{c|c}r_{1} & s_{1} \\ r_{2}+\lambda r_{1} & s_{2}+\lambda s_{1}\end{array}\right)$
- $(A \mid B) \rightsquigarrow(A \mid B+\lambda A)$

Orbits of tensors

We have 3 commuting actions of \mathbb{C} :

- $\left(v_{1} v_{2} \mid w_{1} w_{2}\right) \leadsto\left(v_{1} v_{2}+\lambda v_{1} \mid w_{1} w_{2}+\lambda w_{1}\right)$
- ($\left.\begin{array}{l|l|l}r_{1} & s_{1} \\ r_{2} & s_{2}\end{array}\right) \leadsto\left(\begin{array}{c|c}r_{1} & s_{1} \\ r_{2}+\lambda r_{1} & s_{2}+\lambda s_{1}\end{array}\right)$
- $(A \mid B) \leadsto(A \mid B+\lambda A)$

Remark: These operations do not change ranks or leading coefficients.

Orbits of tensors

We have 3 commuting actions of \mathbb{C} :

- $\left(v_{1} v_{2} \mid w_{1} w_{2}\right) \leadsto\left(v_{1} v_{2}+\lambda v_{1} \mid w_{1} w_{2}+\lambda w_{1}\right)$
- ($\left.\begin{array}{l|l|l}r_{1} & s_{1} \\ r_{2} & s_{2}\end{array}\right) \leadsto\left(\begin{array}{c|c}r_{1} & s_{1} \\ r_{2}+\lambda r_{1} & s_{2}+\lambda s_{1}\end{array}\right)$
- $(A \mid B) \leadsto(A \mid B+\lambda A)$

Remark: These operations do not change ranks or leading coefficients.
Lemma: Every $2 \times 2 \times 2$ tensor with a non-zero leading coefficient lies in the orbit of a tensor of the form

$$
\left(\begin{array}{cc|cc}
c & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)
$$

with $c, \lambda, \mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{C}$.

Tensors with monic rank $\leqslant 2$

Claim: The set of sums of two monic tensors with rank 1 is

$$
\mathbb{C}^{3} \cdot\left\{\left.\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{C} \\
\#\left\{i \mid \mu_{i}=0\right\} \neq 1
\end{array}\right\}
$$

\boldsymbol{u}^{b}

Tensors with monic rank $\leqslant 2$

Claim: The set of sums of two monic tensors with rank 1 is

$$
\mathbb{C}^{3} \cdot\left\{\left.\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{C} \\
\#\left\{i \mid \mu_{i}=0\right\} \neq 1
\end{array}\right\}
$$

Proof:

$\left(\begin{array}{cc|cc}2 & 0 & 0 & \mu_{1} \\ 0 & \mu_{3} & \mu_{2} & \lambda\end{array}\right)=\left(\begin{array}{cc|cc}1 & b & c & b c \\ a & a b & a c & a b c\end{array}\right)+\left(\begin{array}{cc|cc}1 & -b & -c & b c \\ -a & a b & a c & -a b c\end{array}\right)$

Tensors with monic rank $\leqslant 2$

Claim: The set of sums of two monic tensors with rank 1 is

$$
\mathbb{C}^{3} \cdot\left\{\left.\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{C} \\
\#\left\{i \mid \mu_{i}=0\right\} \neq 1
\end{array}\right\}
$$

Proof:

$$
\begin{aligned}
\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right) & =\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)+\left(\begin{array}{cc|cc}
1 & -b & -c & b c \\
-a & a b & a c & -a b c
\end{array}\right) \\
& =\left(\begin{array}{cc|cc}
2 & 0 & 0 & 2 b c \\
0 & 2 a b & 2 a c & 0
\end{array}\right)
\end{aligned}
$$

Tensors with monic rank $\leqslant 2$

Claim: The set of sums of two monic tensors with rank 1 is

$$
\mathbb{C}^{3} \cdot\left\{\left.\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & 0
\end{array}\right) \right\rvert\, \begin{array}{l}
\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{C} \\
\#\left\{i \mid \mu_{i}=0\right\} \neq 1
\end{array}\right\}
$$

Proof:

$$
\begin{aligned}
\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right) & =\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)+\left(\begin{array}{cc|cc}
1 & -b & -c & b c \\
-a & a b & a c & -a b c
\end{array}\right) \\
& =\left(\begin{array}{cc|cc}
2 & 0 & 0 & 2 b c \\
0 & 2 a b & 2 a c & 0
\end{array}\right)
\end{aligned}
$$

Idea: Write every tensor with leading coefficient 3 as

$$
\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & 0
\end{array}\right)+\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)
$$

with $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{C} \backslash\{0\}$ and $a, b, c \in \mathbb{C}$.

Tensors with monic rank $\leqslant 3$

Start with a tensor with leading coefficient 3 in standard form.

$$
\left(\begin{array}{cc|cc}
3 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)
$$

Tensors with monic rank $\leqslant 3$

Start with a tensor with leading coefficient 3 in standard form.

$$
\left(\frac{1}{3} a, \frac{1}{3} b, \frac{1}{3} c\right) \cdot\left(\begin{array}{cc|cc}
3 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)
$$

Tensors with monic rank $\leqslant 3$

Start with a tensor with leading coefficient 3 in standard form.

$$
\left(\frac{1}{3} a, \frac{1}{3} b, \frac{1}{3} c\right) \cdot\left(\begin{array}{cc|cc}
3 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)-\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)
$$

Tensors with monic rank $\leqslant 3$

Start with a tensor with leading coefficient 3 in standard form.

$$
\left.\begin{array}{c}
\left(\frac{1}{3} a, \frac{1}{3} b, \frac{1}{3} c\right) \cdot\left(\begin{array}{cc|cc}
3 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)-\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)= \\
\left(\begin{array}{cc|c}
2 & 0 & 0
\end{array} \begin{array}{c}
\mu_{1}-\frac{2}{3} b c \\
0
\end{array} \mu_{3}-\frac{2}{3} a b\right. \\
\mu_{2}-\frac{2}{3} a c \\
\lambda+\frac{1}{3}\left(a \mu_{1}+b \mu_{2}+c \mu_{3}\right)-\frac{8}{9} a b c
\end{array}\right) .
$$

Tensors with monic rank $\leqslant 3$

Start with a tensor with leading coefficient 3 in standard form.

$$
\left.\begin{array}{c}
\left(\frac{1}{3} a, \frac{1}{3} b, \frac{1}{3} c\right) \cdot\left(\begin{array}{cc|cc}
3 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)-\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)= \\
\left(\begin{array}{cc|c}
2 & 0 & 0
\end{array}\right. \\
\begin{array}{cc}
\mu_{1}-\frac{2}{3} b c \\
0 & \mu_{3}-\frac{2}{3} a b
\end{array} \\
\mu_{2}-\frac{2}{3} a c \\
\lambda+\frac{1}{3}\left(a \mu_{1}+b \mu_{2}+c \mu_{3}\right)-\frac{8}{9} a b c
\end{array}\right) .
$$

Want:

- $\lambda+\frac{1}{3}\left(a \mu_{1}+b \mu_{2}+c \mu_{3}\right)-\frac{8}{9} a b c=0$
- $\mu_{1}-\frac{2}{3} b c \neq 0, \mu_{2}-\frac{2}{3} a c \neq 0$ and $\mu_{3}-\frac{2}{3} a b \neq 0$

Tensors with monic rank $\leqslant 3$

Start with a tensor with leading coefficient 3 in standard form.

$$
\begin{gathered}
\left(\frac{1}{3} a, \frac{1}{3} b, \frac{1}{3} c\right) \cdot\left(\begin{array}{cc|cc}
3 & 0 & 0 & \mu_{1} \\
0 & \mu_{3} & \mu_{2} & \lambda
\end{array}\right)-\left(\begin{array}{cc|cc}
1 & b & c & b c \\
a & a b & a c & a b c
\end{array}\right)= \\
\left(\begin{array}{cc|cc}
2 & 0 & 0 & \mu_{1}-\frac{2}{3} b c \\
0 & \mu_{3}-\frac{2}{3} a b & \mu_{2}-\frac{2}{3} a c & \lambda+\frac{1}{3}\left(a \mu_{1}+b \mu_{2}+c \mu_{3}\right)-\frac{8}{9} a b c
\end{array}\right)
\end{gathered}
$$

Want:

- $\lambda+\frac{1}{3}\left(a \mu_{1}+b \mu_{2}+c \mu_{3}\right)-\frac{8}{9} a b c=0$
- $\mu_{1}-\frac{2}{3} b c \neq 0, \mu_{2}-\frac{2}{3} a c \neq 0$ and $\mu_{3}-\frac{2}{3} a b \neq 0$

This is doable unless $\lambda=\mu_{1}=\mu_{2}=\mu_{3}=0$ (and that case is easy).

Maximal rank vs maximal monic rank

Theorem

- For an $n \times m$ matrix, we have

$$
\text { maximal rank }=\text { maximal monic rank }=\min (n, m)
$$

- For a symmetric $n \times n$ matrix, we have maximal rank $=$ maximal monic rank $=n$
- For a trace-zero $n \times n$ matrix, we have maximal rank $=$ maximal monic rank $=n$
- For a $2 \times 2 \times 2$ tensor, we have maximal rank $=$ maximal monic rank $=3$

Maximal rank vs maximal monic rank

Theorem

- For an $n \times m$ matrix, we have

$$
\text { maximal rank }=\text { maximal monic rank }=\min (n, m)
$$

- For a symmetric $n \times n$ matrix, we have

$$
\text { maximal rank }=\text { maximal monic rank }=n
$$

- For a trace-zero $n \times n$ matrix, we have

$$
\text { maximal rank }=\text { maximal monic rank }=n
$$

- For a $2 \times 2 \times 2$ tensor, we have

$$
\text { maximal rank }=\text { maximal monic rank }=3
$$

Assume that h is a highest weight vector.
Question: Are the maximal rank and maximal monic rank always equal?

References

Bik, Draisma, Oneto, Ventura, The monic rank, preprint.
Blekherman, Teitler, On Maximum, Typical and Generic Ranks, Mathematische Annalen 362 (2015), no. 3, pp 1021-1031.
Lundqvist, Oneto, Reznick, Shapiro, On generic and maximal k-ranks of binary forms, Journal of Pure and Applied Algebra, 2018.

