Strength of (infinite) Polynomials

Applied Algebra Seminar

October 20, 2022

Arthur Bik

Different ranks of tensors

Notation

We visualize a tensor by putting its slices next to each other.

$$
\left.\begin{array}{c}
\\
\\
\\
\\
\text { Row 1 } \\
\text { Rayer 1 }
\end{array} \text { Layer 2 } \quad \begin{array}{cc|cc}
\\
\text { Row 2 }
\end{array} \begin{array}{cc|cc}
T_{111} & T_{112} & T_{211} & T_{212} \\
T_{121} & T_{122} & T_{221} & T_{222} \\
\text { Col 1 } & \text { Col 2 } & \text { Col 1 } & \text { Col 2 }
\end{array}\right)
$$

Example

Tensor representing avarage speeding fines:

$$
\begin{aligned}
& \\
& \text { US } \\
& \text { UK car }
\end{aligned}\left(\begin{array}{cc|cc}
100 & 80 & 50 & 40 \\
60 & 60 & 30 & 30
\end{array}\right)
$$

BBG $=$ The Great British Bake Off

Different ranks of tensors

HUGE tensor \rightsquigarrow search for structure

Definition

A pure tensor is any tensor of the form

$$
\left(\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right) \otimes\left(\begin{array}{ll}
r_{1} & r_{2}
\end{array}\right) \otimes\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right):=\left(\begin{array}{lll}
\ell_{1} r_{1} c_{1} & \ell_{1} r_{1} c_{2} & \ell_{2} r_{1} c_{1} \\
\ell_{2} r_{1} c_{2} \\
\ell_{1} r_{2} c_{1} & \ell_{1} r_{2} c_{2} & \ell_{2} r_{2} c_{1}
\end{array} \ell_{2} r_{2} c_{2}\right)
$$

The tensor rank of a tensor T is the minimum r such that

$$
T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}
$$

for some choices of u_{i}, v_{i}, w_{i}.

Different ranks of tensors

How do you recognize a pure tensor?

$$
\left(\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right) \otimes\left(\begin{array}{ll}
r_{1} & r_{2}
\end{array}\right) \otimes\left(\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right):=\left(\begin{array}{lll}
\ell_{1} r_{1} c_{1} & \ell_{1} r_{1} c_{2} & \ell_{2} r_{1} c_{1}
\end{array} \ell_{2} r_{1} c_{2}\right)
$$

Answer: Flattening have rank 1

$$
\left(\begin{array}{llll}
\ell_{1} r_{1} c_{1} & \ell_{1} r_{1} c_{2} & \ell_{2} r_{1} c_{1} & \ell_{2} r_{1} c_{2} \\
\ell_{1} r_{2} c_{1} & \ell_{1} r_{2} c_{2} & \ell_{2} r_{2} c_{1} & \ell_{2} r_{2} c_{2}
\end{array}\right)=\binom{r_{1}}{r_{2}}\left(\ell_{1} c_{1} \ell_{1} c_{2} \ell_{2} c_{1} \ell_{2} c_{2}\right)
$$

$$
\left(\begin{array}{ll}
\ell_{1} r_{1} c_{1} & \ell_{1} r_{1} c_{2} \tag{1}\\
\ell_{1} r_{2} c_{1} & \ell_{1} r_{2} c_{2} \\
\ell_{2} r_{1} c_{1} & \ell_{2} r_{1} c_{2} \\
\ell_{2} r_{2} c_{1} & \ell_{2} r_{2} c_{2}
\end{array}\right)=\left(\begin{array}{c}
\ell_{1} r_{1} \\
\ell_{1} r_{2} \\
\ell_{1} r_{1} \\
\ell_{2} r_{2}
\end{array}\right)\left(c_{1} c_{2}\right), \quad\left(\begin{array}{cc}
\ell_{1} r_{1} c_{1} & \ell_{2} r_{1} c_{1} \\
\ell_{1} r_{2} c_{1} & \ell_{2} r_{2} c_{1} \\
\ell_{1} r_{1} c_{2} & \ell_{2} r_{1} c_{2} \\
\ell_{1} r_{2} c_{2} & \ell_{2} r_{2} c_{2}
\end{array}\right)=\left(\begin{array}{c}
r_{1} c_{1} \\
r_{2} c_{1} \\
r_{1} c_{2} \\
r_{2} c_{2}
\end{array}\right)
$$

Different ranks of tensors

Example

Tensor representing avarage speeding fines:
US

UK car | Blue car | |
| :---: | :---: | :---: | :---: |
| UK | |\(\left(\begin{array}{cc|cc}100 \& 80 \& 50 \& 40

60 \& 60 \& 30 \& 30

GGB \& no \& GGB \& no\end{array}\right.\)
$\mathrm{BBG}=$ The Great British Bake Off

Only 1 out of 3 flattenings has rank $1 \Rightarrow$ not a pure tensor

Definition

The strength of a tensor T is the minimum r such that

$$
T=T_{1}+\ldots+T_{r}
$$

where each T_{i} has a rank-1 flattening.

Different ranks of tensors

Given linear maps $L_{i}: \mathbb{C}^{n_{i}} \rightarrow \mathbb{C}^{m_{i}}$, we get the linear map

$$
\begin{aligned}
& L_{1} \otimes \cdots \otimes L_{d}: \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}} \rightarrow \mathbb{C}^{m_{1}} \otimes \cdots \otimes \mathbb{C}^{m_{d}} \\
& v_{1} \otimes \cdots \otimes v_{d} \mapsto \\
& L_{1}\left(v_{1}\right) \otimes \cdots \otimes L_{d}\left(v_{d}\right)
\end{aligned}
$$

We call $\left(L_{1} \otimes \cdots \otimes L_{d}\right)(T)$ a coordinate transform of T.

Theorem (B-Draisma-Eggermont)

Let \mathcal{P} be a property of tensors such that
T has $\mathcal{P} \Rightarrow$ all coordinate transforms of T have \mathcal{P}
holds. Then either

$$
\left\{T \in \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}} \mid T \text { has } \mathcal{P}\right\}
$$

is Zariski-dense for all $n_{1}, \ldots, n_{d} \geq 1$ or there exists a C such that

$$
T \text { has } \mathcal{P} \Rightarrow \operatorname{str}(T) \leq C
$$

Different ranks of tensors

How difficult is strength?

The set of pure tensors is a variety with 1 component.
The set of d-way tensors with a rank- 1 flattening has $2^{d-1}-1$ components.

How about symmetric tensors/homogenous polynomials?
The strength of a homogeneous polynomial f is the minimum r such that

$$
f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

where $\operatorname{deg}\left(g_{i}\right), \operatorname{deg}\left(h_{i}\right)<\operatorname{deg}(f)$.
The set of reducible polynomials has $\lfloor d / 2\rfloor$ components.

Strength of polynomials

Definition

The strength of a homogeneous polynomial f is the minimum r such that

$$
f=g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}
$$

where $\operatorname{deg}\left(g_{i}\right), \operatorname{deg}\left(h_{i}\right)<\operatorname{deg}(f)$.

Example

What is the strength of $f=x^{2}+y^{2}+z^{2}$?

- We have $\operatorname{str}(f) \leq 3$ since $f=x \cdot x+y \cdot y+z \cdot z$.
- We have $\operatorname{str}(f) \neq 0$ since $f \neq 0$.
- We have $\operatorname{str}(f) \neq 1$ since f is not reducible.
- Note that $f=(x+i y) \cdot(x-i y)+z \cdot z$.

So $\operatorname{str}(f)=2$ over \mathbb{C} (but over \mathbb{R} it would be 3).

Strength of polynomials

Universality

Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ and $\ell_{1}, \ldots, \ell_{n}$ be linear forms in y_{1}, \ldots, y_{m}. The polynomial

$$
f\left(\ell_{1}, \ldots, \ell_{n}\right) \in \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]_{d}
$$

is a coordinate transform of f.
Let \mathcal{P} be a property of degree- d polynomials such that

$$
f \text { has } \mathcal{P} \Rightarrow \text { every coordinate transform of } f \text { has } \mathcal{P}
$$

Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)
Either all f have \mathcal{P} or there exists a $k \geq 0$ such that

$$
f \text { has } \mathcal{P} \Rightarrow \operatorname{str}(f) \leq k
$$

Remark

Choosing $\mathcal{P}=$ "is a limit of strength k polynomials over \bar{K} " yields that $\operatorname{str}_{K}(f) \leq P\left(\operatorname{str}_{\bar{K}}(f)\right)$ for some polynomial P.

Computing the strength of a polynomial IAS

Some Tricks

(1) We have $\operatorname{str}(f+g) \leq \operatorname{str}(f)+\operatorname{str}(g)$.
(2) For $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$, we define the singular locus:

$$
\operatorname{Sing}(f):=\left\{\frac{\partial f}{\partial x_{1}}=\ldots=\frac{\partial f}{\partial x_{n}}=0\right\}
$$

When $f=g_{1} \cdot h_{1}+\ldots+g_{k} \cdot h_{k}$, then

$$
\left\{g_{1}=h_{1}=\ldots=g_{k}=h_{k}=0\right\} \subseteq \operatorname{Sing}(f)
$$

and so $\operatorname{dim} \operatorname{Sing}(f) \geq n-2 \operatorname{str}(f)$.
(3) Every polynomial in $\mathbb{C}[x, y]_{d}$ is reducible. Hence

$$
f \in \mathbb{C}[x, y]_{d} \Rightarrow \operatorname{str}(f) \leq 1
$$

Computing the strength of a polynomial IAS

Example

Consider $f=x_{1}^{d}+\ldots+x_{n}^{d}$.
We have

$$
f= \begin{cases}\left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{d}+x_{2 k}^{d}\right) & \text { if } n=2 k \\ \left(x_{1}^{d}+x_{2}^{d}\right)+\ldots+\left(x_{2 k-1}^{d}+x_{2 k}^{d}\right)+x_{2 k+1}^{d} & \text { if } n=2 k+1\end{cases}
$$

and so $\operatorname{str}(f) \leq\lceil n / 2\rceil$.
The singular locus

$$
\operatorname{Sing}(f)=\left\{d x_{1}^{d-1}=\ldots=d x_{n}^{d-1}=0\right\}=\{(0, \ldots, 0)\} \subseteq \mathbb{C}^{n}
$$

has dimenion $0 \geq n-2 \operatorname{str}(f)$. So $\operatorname{str}(f) \geq\lceil n / 2\rceil$.
So $\operatorname{str}(f)=\lceil n / 2\rceil$.

Strength vs matrix rank

Theorem

For every $k \geq 0$, the set $\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\right\}$ is closed.
What about $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} \mid \operatorname{str}(f) \leq k\right\}$?
For $k=1$, yes. (union of images of projective morphisms).
For $k=2$, I don't know.
For $d=2$, yes. (rank of symmetric matrices)
For $d=3$, yes. (slice rank of polynomials)
Example ($k=3, d=4$)
${ }^{1} / t\left(x^{2}+t g\right)\left(y^{2}+t f\right)-1 / t\left(u^{2}-t q\right)\left(v^{2}-t p\right)-1 / t(x y-u v)(x y+u v)$
(1) It has strength ≤ 3.
(2) For $t \rightarrow 0$, we get $x^{2} f+y^{2} g+u^{2} p+v^{2} q$.

Strength vs matrix rank

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, we have

$$
\operatorname{str}\left(x^{2} f+y^{2} g+u^{2} p+v^{2} q\right)=4
$$

for some $x, y, u, v \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{1}$ and $f, g, p, q \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{2}$.

Corollary

The set $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{4} \mid \operatorname{str}(f) \leq 3\right\}$ is not closed for $n \gg 0$.

Question

Which n are high enough?
Question
What is the strength of $x^{2} a^{2}+y^{2} b^{2}+u^{2} c^{2}+v^{2} d^{2}$?

An easier case

Proposition

We have

$$
\operatorname{str}\left(x^{2} f+y^{2} g+u^{2} p+v^{2} q\right)=4
$$

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.

An easier case

Proposition

We have

$$
\operatorname{str}\left(x^{2} f+y^{2} g+u^{2} p+v^{2} q\right)=4
$$

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2 .

$1 / 4$ of the proof

We need to show, for example, that

$$
x^{2} f+y^{2} g+u^{2} p+v^{2} q \neq \ell_{1} \cdot h_{1}+\ell_{2} \cdot h_{2}+\ell_{3} \cdot h_{3}
$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.
Think of $R=\mathbb{C}[x, y, u, v]$ as the set of coefficients.
So $\ell_{i} \in R$ and $h_{i} \in R[f, g, p, q]$.
The coefficients of f, g, p, q on the right are all in $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.
The coefficients $x^{2}, y^{2}, u^{2}, v^{2}$ on the left are not all $\left(\ell_{1}, \ell_{2}, \ell_{3}\right)$.

Strength vs matrix rank

Theorem

We have $\left\{\operatorname{rk}(A) \mid A \in \mathbb{C}^{n \times m}\right\}=\{0,1, \ldots, \min (n, m)\}$.
What about strength in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$?
(1) We can write any polynomial f as $x_{1} \cdot g_{1}+\ldots+x_{n} \cdot g_{n}$.

$$
\Rightarrow \operatorname{str}(f) \in\{0,1, \ldots, n\}
$$

(2) Suppose that f has maximal strength and write

$$
f=\sum_{i=1}^{\operatorname{str}(f)} g_{i} \cdot h_{i}
$$

Then $g_{1} \cdot h_{1}+\ldots+g_{r} \cdot h_{r}$ has strength r for $r=0, \ldots, \operatorname{str}(f)$.
$\Rightarrow\left\{\operatorname{str}(f) \mid f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}\right\}$ is an interval $\{0,1, \ldots, r\}$.

Strength vs matrix rank

Take $d \geq 3$ and r minimal such that

$$
r(n-r) \geq\binom{ n-r+d-1}{d}
$$

This means that $r \approx n-\sqrt[d-1]{d!n}$.
Theorem (Harris)
A polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ can be written as

$$
\ell_{1} h_{1}+\ldots+\ell_{r} h_{r}
$$

with $\ell_{1}, \ldots, \ell_{r}$ linear.
Theorem (Ballico-B-Oneto-Ventura)
A generic polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d}$ has strength r.

Polynomial series

For $d \geq 1$, we define

$$
S_{\infty}^{d}=\left\{\sum_{1 \leq i_{1} \leq \cdots \leq i_{d}} a_{i_{1} \cdots i_{d}} x_{i_{1}} \cdots x_{i_{d}} \mid a_{i_{1} \cdots i_{d}} \in \mathbb{C}\right\}
$$

to be the set of degree- d polynomial series.
Now $S_{\infty}=\mathbb{C} \oplus \bigoplus_{d \geq 1} S_{\infty}^{d}$ is a ring.
Definition
A system of variables is collection $\left(f_{i}\right)_{i \in I}$ such that

$$
\begin{aligned}
\mathbb{C}\left[y_{i} \mid i \in I\right] & \rightarrow S_{\infty} \\
y_{i} & \mapsto f_{i}
\end{aligned}
$$

is an isomorphism. A part of a system of variables is a subcollection of a system of variables.

Systems of variables

Theorem (Erman-Sam-Snowden)

A system of variables exists (in more general settings).

Proof

Let F^{d} be the subspace of finite-strength elements of S_{∞}^{d} and take a collection $\left(f_{i}\right)_{i \in I_{d}}$ that maps to a basis of S_{∞}^{d} / F^{d}.

Take $I=\bigcup_{d \geq 1} I_{d}$. Then $\left(f_{i}\right)_{i \in I}$ is a system of variables.

Proposition

Let $(x, y, u, v, f, g, p, q) \in\left(S_{\infty}^{1}\right)^{4} \times\left(S_{\infty}^{2}\right)^{4}$ be part of a system of variables. Then $\operatorname{str}\left(x^{2} f+y^{2} g+u^{2} p+v^{2} q\right)=4$.

Setting $x_{n+1}, x_{n+2}, \ldots=0$ for $n \gg 0$ yields the counter example.

Systems of variables

What does a coordinate transform means in this setting?

Non-example

Take $f=x_{1}+x_{2}+\ldots$ and set $x_{i} \mapsto x_{1}$ for all $i \in \mathbb{N}$.

Definition

Let $f \in S_{\infty}^{d}$. Then a coordinate transform of f is

$$
f\left(\ell_{1}, \ell_{2}, \ldots\right) \in S_{\infty}^{d}
$$

where $\ell_{1}, \ell_{2}, \ldots$ are linear forms in x_{1}, x_{2}, \ldots so that every variable x_{i} only appears in finitely many linear forms ℓ_{j}.

Example

$\left(x_{1}+x_{2}+\ldots\right)^{2}$ is a coordinate transform of x_{1}^{2}.

Systems of variables

Definition

Let $f \in S_{\infty}^{d}$. Then a coordinate transform of f is

$$
f\left(\ell_{1}, \ell_{2}, \ldots\right) \in S_{\infty}^{d}
$$

where $\ell_{1}, \ell_{2}, \ldots$ are linear forms in x_{1}, x_{2}, \ldots so that every variable x_{i} only appears in finitely many linear forms ℓ_{j}.

Definition

We say that f specializes to g when g is a coordinate transform of f. We say that f, g are isogenous when they specialize to each other.

Question

What is the structure of the poset of isogenous classes?

Systems of variables

Example ($d=1$)

The nonzero elements of S_{∞}^{1} form one isogeny class.
Example ($d=2$)
f, g are isogeneous \Leftrightarrow associated matrices have same rank.

Proposition

If f specializes to g, then $\operatorname{str}(g) \leq \operatorname{str}(f)$.
Theorem (B-Danelon-Snowden)
The poset of infinite-strength isogeny classes in S_{∞}^{3} is $\mathbb{N} \cup\{\infty\}$.

Proposition

$x_{1}^{3}+x_{2}^{3}+\ldots$ does not specialize to $x_{1} \cdot\left(x_{2}^{2}+x_{3}^{2}+\ldots\right)$.

Proof.

Let $\ell_{1}^{3}+\ell_{2}^{3}+\ldots$ be a specialization of $x_{1}^{3}+x_{2}^{3}+\ldots$. Then the set

$$
J:=\left\{j \in \mathbb{N} \mid x_{1} \text { occurs in } \ell_{j}\right\}
$$

is finite. The series

$$
\frac{\partial}{\partial x_{1}}\left(\ell_{1}^{3}+\ell_{2}^{3}+\ldots\right)=\sum_{j \in J} 3 \frac{\partial \ell_{j}}{\partial x_{1}} \ell_{j}^{2}
$$

has strength $\leq \# J<\infty$.

Definition

The residual rank of $f \in S_{\infty}^{d}$ is

$$
\operatorname{rrk}(f)=\operatorname{dim} \operatorname{span}\left\{\left.\frac{\partial}{\partial x_{i}} f \bmod F^{d} \right\rvert\, i \in \mathbb{N}\right\}
$$

where $F^{d} \subseteq S_{\infty}^{d}$ is the subspace of finite-strength elements.

Residual rank

Definition

The residual rank of $f \in S_{\infty}^{d}$ is

$$
\operatorname{rrk}(f)=\operatorname{dim} \operatorname{span}\left\{\left.\frac{\partial}{\partial x_{i}} f \bmod F^{d} \right\rvert\, i \in \mathbb{N}\right\}
$$

where $F^{d} \subseteq S_{\infty}^{d}$ is the subspace of finite-strength elements.

Theorem (B-Danelon-Snowden)

The map rrk is an isomorphism between the poset of isogeny classes of S_{∞}^{3} and $\mathbb{N} \cup\{\infty\}$. Sketch of proof for finite rrk
Set $r=\operatorname{rrk}(f)$ and put the series f in standard form

$$
f \simeq x_{1} g_{1}+\ldots+x_{r} g_{r}+h
$$

where $\left(g_{1}, \ldots, g_{r}, h\right)$ part of a system of variables and $\operatorname{rrk}(h)=0$. Then show that all such tuples are isogenous.

Thank you for your attention!

