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Different ranks of tensors

Notation
We visualize a tensor by putting its slices next to each other.

Layer 1 Layer 2

Row 1
Row 2

(
T111 T112 T211 T212
T121 T122 T221 T222

)
Col 1 Col 2 Col 1 Col 2

Example
Tensor representing avarage speeding fines:

Red car Blue car
US
UK

(
100 80 50 40
60 60 30 30

)
GGB no GGB no

BBG = The Great British Bake Off
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Different ranks of tensors

HUGE tensor ⇝ search for structure

Definition
A pure tensor is any tensor of the form

(ℓ1 ℓ2) ⊗ (r1 r2) ⊗ (c1 c2) :=
(

ℓ1r1c1 ℓ1r1c2 ℓ2r1c1 ℓ2r1c2
ℓ1r2c1 ℓ1r2c2 ℓ2r2c1 ℓ2r2c2

)

The tensor rank of a tensor T is the minimum r such that

T =
r∑

i=1
ui ⊗ vi ⊗ wi

for some choices of ui, vi, wi.
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Different ranks of tensors

How do you recognize a pure tensor?

(ℓ1 ℓ2) ⊗ (r1 r2) ⊗ (c1 c2) :=
(

ℓ1r1c1 ℓ1r1c2 ℓ2r1c1 ℓ2r1c2
ℓ1r2c1 ℓ1r2c2 ℓ2r2c1 ℓ2r2c2

)

Answer: Flattenings have rank 1

(
ℓ1r1c1 ℓ1r1c2 ℓ2r1c1 ℓ2r1c2
ℓ1r2c1 ℓ1r2c2 ℓ2r2c1 ℓ2r2c2

)
=
(

r1
r2

)
(ℓ1c1 ℓ1c2 ℓ2c1 ℓ2c2)


ℓ1r1c1 ℓ1r1c2
ℓ1r2c1 ℓ1r2c2
ℓ2r1c1 ℓ2r1c2
ℓ2r2c1 ℓ2r2c2

 =


ℓ1r1
ℓ1r2
ℓ1r1
ℓ2r2

 (c1 c2),


ℓ1r1c1 ℓ2r1c1
ℓ1r2c1 ℓ2r2c1
ℓ1r1c2 ℓ2r1c2
ℓ1r2c2 ℓ2r2c2

 =


r1c1
r2c1
r1c2
r2c2

 (ℓ1 ℓ2)
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Different ranks of tensors

Example
Tensor representing avarage speeding fines:

Red car Blue car
US
UK

(
100 80 50 40
60 60 30 30

)
GGB no GGB no

BBG = The Great British Bake Off

Only 1 out of 3 flattenings has rank 1 ⇒ not a pure tensor

Definition
The strength of a tensor T is the minimum r such that

T = T1 + . . . + Tr

where each Ti has a rank-1 flattening.
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Different ranks of tensors

Given linear maps Li : Cni → Cmi , we get the linear map

L1 ⊗ · · · ⊗ Ld : Cn1 ⊗ · · · ⊗ Cnd → Cm1 ⊗ · · · ⊗ Cmd

v1 ⊗ · · · ⊗ vd 7→ L1(v1) ⊗ · · · ⊗ Ld(vd)

We call (L1 ⊗ · · · ⊗ Ld)(T ) a coordinate transform of T .

Theorem (B-Draisma-Eggermont)
Let P be a property of tensors such that

T has P ⇒ all coordinate transforms of T have P

holds. Then either

{T ∈ Cn1 ⊗ · · · ⊗ Cnd | T has P}

is Zariski-dense for all n1, . . . , nd ≥ 1 or there exists a C such that

T has P ⇒ str(T ) ≤ C
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Different ranks of tensors

How difficult is strength?
The set of pure tensors is a variety with 1 component.

The set of d-way tensors with a rank-1 flattening has 2d−1 − 1
components.

How about symmetric tensors/homogenous polynomials?
The strength of a homogeneous polynomial f is the minimum r
such that

f = g1 · h1 + . . . + gr · hr

where deg(gi), deg(hi) < deg(f).

The set of reducible polynomials has ⌊d/2⌋ components.
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Strength of polynomials

Definition
The strength of a homogeneous polynomial f is the minimum r
such that

f = g1 · h1 + . . . + gr · hr

where deg(gi), deg(hi) < deg(f).

Example
What is the strength of f = x2 + y2 + z2?

• We have str(f) ≤ 3 since f = x · x + y · y + z · z.
• We have str(f) ̸= 0 since f ̸= 0.
• We have str(f) ̸= 1 since f is not reducible.
• Note that f = (x + iy) · (x − iy) + z · z.

So str(f) = 2 over C (but over R it would be 3).
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Strength of polynomials

Universality
Let f ∈ C[x1, . . . , xn]d and ℓ1, . . . , ℓn be linear forms in y1, . . . , ym.
The polynomial

f(ℓ1, . . . , ℓn) ∈ C[y1, . . . , ym]d
is a coordinate transform of f .

Let P be a property of degree-d polynomials such that
f has P ⇒ every coordinate transform of f has P

Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)
Either all f have P or there exists a k ≥ 0 such that

f has P ⇒ str(f) ≤ k

Remark
Choosing P =“is a limit of strength k polynomials over K” yields
that strK(f) ≤ P (strK(f)) for some polynomial P .
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Computing the strength of a polynomial

Some Tricks
1 We have str(f + g) ≤ str(f) + str(g).
2 For f ∈ C[x1, . . . , xn]d, we define the singular locus:

Sing(f) :=
{

∂f

∂x1
= . . . = ∂f

∂xn
= 0

}
When f = g1 · h1 + . . . + gk · hk, then

{g1 = h1 = . . . = gk = hk = 0} ⊆ Sing(f)

and so dim Sing(f) ≥ n − 2 str(f).
3 Every polynomial in C[x, y]d is reducible. Hence

f ∈ C[x, y]d ⇒ str(f) ≤ 1
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Computing the strength of a polynomial

Example
Consider f = xd

1 + . . . + xd
n.

We have

f =
{

(xd
1 + xd

2) + . . . + (xd
2k−1 + xd

2k) if n = 2k
(xd

1 + xd
2) + . . . + (xd

2k−1 + xd
2k) + xd

2k+1 if n = 2k + 1
and so str(f) ≤ ⌈n/2⌉.

The singular locus
Sing(f) = {dxd−1

1 = . . . = dxd−1
n = 0} = {(0, . . . , 0)} ⊆ Cn

has dimenion 0 ≥ n − 2 str(f). So str(f) ≥ ⌈n/2⌉.

So str(f) = ⌈n/2⌉.
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Strength vs matrix rank

Theorem
For every k ≥ 0, the set {A ∈ Cn×m | rk(A) ≤ k} is closed.

What about {f ∈ C[x1, . . . , xn]d | str(f) ≤ k}?

For k = 1, yes. (union of images of projective morphisms).
For k = 2, I don’t know.
For d = 2, yes. (rank of symmetric matrices)
For d = 3, yes. (slice rank of polynomials)

Example (k = 3, d = 4)
1/

t(x
2+tg)(y2+tf)−1/

t(u
2−tq)(v2−tp)−1/

t(xy−uv)(xy+uv)

1 It has strength ≤ 3.
2 For t → 0, we get x2f + y2g + u2p + v2q.
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Strength vs matrix rank

Theorem (Ballico-B-Oneto-Ventura)
For n ≫ 0, we have

str(x2f + y2g + u2p + v2q) = 4

for some x, y, u, v ∈ C[x1, . . . , xn]1 and f, g, p, q ∈ C[x1, . . . , xn]2.

Corollary
The set {f ∈ C[x1, . . . , xn]4 | str(f) ≤ 3} is not closed for n ≫ 0.

Question
Which n are high enough?

Question
What is the strength of x2a2 + y2b2 + u2c2 + v2d2 ?
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An easier case

Proposition
We have

str(x2f + y2g + u2p + v2q) = 4

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2.

1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p + v2q ̸= ℓ1 · h1 + ℓ2 · h2 + ℓ3 · h3

for all ℓi ∈ C[x, y, u, v, f, g, p, q]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.
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An easier case

Proposition
We have

str(x2f + y2g + u2p + v2q) = 4

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2.

1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p + v2q ̸= ℓ1 · h1 + ℓ2 · h2 + ℓ3 · h3

for all ℓi ∈ C[x, y, u, v]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.

Think of R = C[x, y, u, v] as the set of coefficients.
So ℓi ∈ R and hi ∈ R[f, g, p, q].

The coefficients of f, g, p, q on the right are all in (ℓ1, ℓ2, ℓ3).
The coefficients x2, y2, u2, v2 on the left are not all (ℓ1, ℓ2, ℓ3).
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Strength vs matrix rank

Theorem
We have {rk(A) | A ∈ Cn×m} = {0, 1, . . . , min(n, m)}.

What about strength in C[x1, . . . , xn]d?
1 We can write any polynomial f as x1 · g1 + . . . + xn · gn.

⇒ str(f) ∈ {0, 1, . . . , n}
2 Suppose that f has maximal strength and write

f =
str(f)∑
i=1

gi · hi

Then g1 · h1 + . . . + gr · hr has strength r for r = 0, . . . , str(f).
⇒ {str(f) | f ∈ C[x1, . . . , xn]d} is an interval {0, 1, . . . , r}.
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Strength vs matrix rank

Take d ≥ 3 and r minimal such that

r(n − r) ≥
(

n − r + d − 1
d

)
.

This means that r ≈ n − d−1√d!n.

Theorem (Harris)
A polynomial in C[x1, . . . , xn]d can be written as

ℓ1h1 + . . . + ℓrhr

with ℓ1, . . . , ℓr linear.

Theorem (Ballico-B-Oneto-Ventura)
A generic polynomial in C[x1, . . . , xn]d has strength r.
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Polynomial series

For d ≥ 1, we define

Sd
∞ =

 ∑
1≤i1≤···≤id

ai1···id
xi1 · · · xid

∣∣∣∣∣∣ ai1···id
∈ C


to be the set of degree-d polynomial series.

Now S∞ = C⊕
⊕

d≥1 Sd
∞ is a ring.

Definition
A system of variables is collection (fi)i∈I such that

C[yi | i ∈ I] → S∞

yi 7→ fi

is an isomorphism. A part of a system of variables is a
subcollection of a system of variables.
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Systems of variables

Theorem (Erman-Sam-Snowden)
A system of variables exists (in more general settings).

Proof
Let F d be the subspace of finite-strength elements of Sd

∞ and take
a collection (fi)i∈Id

that maps to a basis of Sd
∞/F d.

Take I =
⋃

d≥1 Id. Then (fi)i∈I is a system of variables.

Proposition
Let (x, y, u, v, f, g, p, q) ∈ (S1

∞)4 × (S2
∞)4 be part of a system of

variables. Then str(x2f + y2g + u2p + v2q) = 4.

Setting xn+1, xn+2, . . . = 0 for n ≫ 0 yields the counter example.
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Systems of variables

What does a coordinate transform means in this setting?

Non-example
Take f = x1 + x2 + . . . and set xi 7→ x1 for all i ∈ N.

Definition
Let f ∈ Sd

∞. Then a coordinate transform of f is

f(ℓ1, ℓ2, . . .) ∈ Sd
∞

where ℓ1, ℓ2, . . . are linear forms in x1, x2, . . . so that every variable
xi only appears in finitely many linear forms ℓj .

Example
(x1 + x2 + . . .)2 is a coordinate transform of x2

1.
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Systems of variables

Definition
Let f ∈ Sd

∞. Then a coordinate transform of f is

f(ℓ1, ℓ2, . . .) ∈ Sd
∞

where ℓ1, ℓ2, . . . are linear forms in x1, x2, . . . so that every variable
xi only appears in finitely many linear forms ℓj .

Definition
We say that f specializes to g when g is a coordinate transform of f .
We say that f, g are isogenous when they specialize to each other.

Question
What is the structure of the poset of isogenous classes?

Strength of (infinite) Polynomials Arthur Bik



Systems of variables

Example (d = 1)
The nonzero elements of S1

∞ form one isogeny class.

Example (d = 2)
f, g are isogeneous ⇔ associated matrices have same rank.

Proposition
If f specializes to g, then str(g) ≤ str(f).

Theorem (B-Danelon-Snowden)
The poset of infinite-strength isogeny classes in S3

∞ is N∪{∞}.
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Residual rank

Proposition
x3

1 + x3
2 + . . . does not specialize to x1 · (x2

2 + x2
3 + . . .).

Proof.
Let ℓ3

1 + ℓ3
2 + . . . be a specialization of x3

1 + x3
2 + . . .. Then the set

J := {j ∈ N | x1 occurs in ℓj}
is finite. The series

∂

∂x1
(ℓ3

1 + ℓ3
2 + . . .) =

∑
j∈J

3 ∂ℓj

∂x1
ℓ2

j

has strength ≤ #J < ∞.
Definition
The residual rank of f ∈ Sd

∞ is

rrk(f) = dim span
{

∂

∂xi
f mod F d

∣∣∣∣ i ∈ N
}

where F d ⊆ Sd
∞ is the subspace of finite-strength elements.
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Residual rank

Definition
The residual rank of f ∈ Sd

∞ is

rrk(f) = dim span
{

∂

∂xi
f mod F d

∣∣∣∣ i ∈ N
}

where F d ⊆ Sd
∞ is the subspace of finite-strength elements.

Theorem (B-Danelon-Snowden)
The map rrk is an isomorphism between the poset of isogeny
classes of S3

∞ and N∪{∞}.
Sketch of proof for finite rrk
Set r = rrk(f) and put the series f in standard form

f ≃ x1g1 + . . . + xrgr + h

where (g1, . . . , gr, h) part of a system of variables and rrk(h) = 0.
Then show that all such tuples are isogenous.
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Thank you for your attention!
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