Strength of (infinite) Polynomials

Applied Algebra Seminar

October 20, 2022

Arthur Bik

Notation

We visualize a tensor by putting its slices next to each other.

 $\begin{array}{c|c} & \text{Layer 1} & \text{Layer 2} \\ \hline \text{Row 1} & \begin{pmatrix} T_{111} & T_{112} & | & T_{211} & T_{212} \\ T_{121} & T_{122} & | & T_{221} & T_{222} \\ \hline \text{Col 1} & \text{Col 2} & \text{Col 1} & \text{Col 2} \\ \end{pmatrix}$

Example

Tensor representing avarage speeding fines:

$$\begin{array}{c|ccccc} {\sf Red \ car} & {\sf Blue \ car} \\ {\sf US} & \left(\begin{matrix} 100 & 80 & 50 & 40 \\ 60 & 60 & 30 & 30 \\ {}_{\sf GGB} & {}_{\sf no} & {}_{\sf GGB} & {}_{\sf no} \end{matrix} \right)$$

 $\mathsf{BBG}=\mathsf{The}\;\mathsf{Great}\;\mathsf{British}\;\mathsf{Bake}\;\mathsf{Off}$

INSTITUTE FOR

IAS INSTITUTE FOR ADVANCED STU

HUGE tensor \rightsquigarrow search for structure

Definition

A pure tensor is any tensor of the form

$$(\ell_1 \ \ell_2) \otimes (r_1 \ r_2) \otimes (c_1 \ c_2) := \begin{pmatrix} \ell_1 r_1 c_1 & \ell_1 r_1 c_2 \\ \ell_1 r_2 c_1 & \ell_1 r_2 c_2 \end{pmatrix} \begin{pmatrix} \ell_2 r_1 c_1 & \ell_2 r_1 c_2 \\ \ell_2 r_2 c_1 & \ell_2 r_2 c_2 \end{pmatrix}$$

The *tensor rank* of a tensor T is the minimum r such that

$$T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$$

for some choices of u_i, v_i, w_i .

IAS INSTITUTE FOR ADVANCED STUDY

How do you recognize a pure tensor?

$$(\ell_1 \ \ell_2) \otimes (r_1 \ r_2) \otimes (c_1 \ c_2) := \begin{pmatrix} \ell_1 r_1 c_1 & \ell_1 r_1 c_2 \\ \ell_1 r_2 c_1 & \ell_1 r_2 c_2 \end{pmatrix} \begin{pmatrix} \ell_2 r_1 c_1 & \ell_2 r_1 c_2 \\ \ell_2 r_2 c_1 & \ell_2 r_2 c_2 \end{pmatrix}$$

Answer: Flattenings have rank 1

$$\begin{pmatrix} \ell_1 r_1 c_1 & \ell_1 r_1 c_2 & \ell_2 r_1 c_1 & \ell_2 r_1 c_2 \\ \ell_1 r_2 c_1 & \ell_1 r_2 c_2 & \ell_2 r_2 c_1 & \ell_2 r_2 c_2 \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} (\ell_1 c_1 \ \ell_1 c_2 \ \ell_2 c_1 \ \ell_2 c_2)$$

$$\begin{pmatrix} \ell_1 r_1 c_1 & \ell_1 r_1 c_2 \\ \ell_1 r_2 c_1 & \ell_1 r_2 c_2 \\ \ell_2 r_1 c_1 & \ell_2 r_1 c_2 \\ \ell_2 r_2 c_1 & \ell_2 r_2 c_2 \end{pmatrix} = \begin{pmatrix} \ell_1 r_1 \\ \ell_1 r_2 \\ \ell_1 r_1 \\ \ell_2 r_2 \end{pmatrix} (c_1 c_2), \quad \begin{pmatrix} \ell_1 r_1 c_1 & \ell_2 r_1 c_1 \\ \ell_1 r_2 c_1 & \ell_2 r_2 c_1 \\ \ell_1 r_1 c_2 & \ell_2 r_1 c_2 \\ \ell_1 r_2 c_2 & \ell_2 r_2 c_2 \end{pmatrix} = \begin{pmatrix} r_1 c_1 \\ r_2 c_1 \\ r_1 c_2 \\ r_2 c_2 \end{pmatrix} (\ell_1 \ell_2)$$

Example

Tensor representing avarage speeding fines:

	Red car		Blue car	
US	$\begin{pmatrix} 100 \\ 60 \end{pmatrix}$	80	50	40
UK	60	60	30	30)
	GGB	no	GGB	no

 $\mathsf{BBG}=\mathsf{The}\xspace$ Great British Bake Off

Only $1 \text{ out of } 3 \text{ flattenings has rank } 1 \Rightarrow \text{not a pure tensor}$

Definition

The *strength* of a tensor T is the minimum r such that

$$T = T_1 + \ldots + T_r$$

where each T_i has a rank-1 flattening.

Strength of (infinite) Polynomials

IAS INSTITUTE FOR ADVANCED STUDY

Given linear maps $L_i: \mathbb{C}^{n_i} \to \mathbb{C}^{m_i}$, we get the linear map

$$L_1 \otimes \cdots \otimes L_d \colon \mathbb{C}^{n_1} \otimes \cdots \otimes \mathbb{C}^{n_d} \to \mathbb{C}^{m_1} \otimes \cdots \otimes \mathbb{C}^{m_d}$$
$$v_1 \otimes \cdots \otimes v_d \mapsto L_1(v_1) \otimes \cdots \otimes L_d(v_d)$$

We call $(L_1 \otimes \cdots \otimes L_d)(T)$ a coordinate transform of T.

Theorem (B-Draisma-Eggermont)

Let $\ensuremath{\mathcal{P}}$ be a property of tensors such that

T has $\mathcal{P} \Rightarrow \text{ all coordinate transforms of } T$ have \mathcal{P}

holds. Then either

$$\{T \in \mathbb{C}^{n_1} \otimes \cdots \otimes \mathbb{C}^{n_d} \mid T \text{ has } \mathcal{P}\}$$

is Zariski-dense for all $n_1, \ldots, n_d \ge 1$ or there exists a C such that

$$T \text{ has } \mathcal{P} \Rightarrow \operatorname{str}(T) \leq C$$

How difficult is strength?

The set of pure tensors is a variety with 1 component.

The set of d-way tensors with a rank-1 flattening has $2^{d-1} - 1$ components.

How about symmetric tensors/homogenous polynomials?

The strength of a homogeneous polynomial f is the minimum \boldsymbol{r} such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

where $\deg(g_i), \deg(h_i) < \deg(f)$.

The set of reducible polynomials has |d/2| components.

Definition

The ${\it strength}$ of a homogeneous polynomial f is the minimum r such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

where $\deg(g_i), \deg(h_i) < \deg(f)$.

Example

What is the strength of $f = x^2 + y^2 + z^2$?

- We have $\operatorname{str}(f) \leq 3$ since $f = x \cdot x + y \cdot y + z \cdot z$.
- We have $str(f) \neq 0$ since $f \neq 0$.
- We have $str(f) \neq 1$ since f is not reducible.
- Note that $f = (x + iy) \cdot (x iy) + z \cdot z$.

So $\operatorname{str}(f) = 2$ over $\mathbb C$ (but over $\mathbb R$ it would be 3).

Universality

Let $f \in \mathbb{C}[x_1, \ldots, x_n]_d$ and ℓ_1, \ldots, ℓ_n be linear forms in y_1, \ldots, y_m . The polynomial

$$f(\ell_1,\ldots,\ell_n) \in \mathbb{C}[y_1,\ldots,y_m]_d$$

is a coordinate transform of f.

Let \mathcal{P} be a property of degree-d polynomials such that f has $\mathcal{P} \Rightarrow$ every coordinate transform of f has \mathcal{P} **Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)** Either all f have \mathcal{P} or there exists a $k \ge 0$ such that f has $\mathcal{P} \Rightarrow \operatorname{str}(f) \le k$

Remark

Choosing $\mathcal{P} =$ "is a limit of strength k polynomials over \overline{K} " yields that $\operatorname{str}_K(f) \leq P(\operatorname{str}_{\overline{K}}(f))$ for some polynomial P.

Some Tricks

- 1 We have $\operatorname{str}(f+g) \leq \operatorname{str}(f) + \operatorname{str}(g)$.
- 2 For $f \in \mathbb{C}[x_1, \ldots, x_n]_d$, we define the singular locus:

$$\operatorname{Sing}(f) := \left\{ \frac{\partial f}{\partial x_1} = \ldots = \frac{\partial f}{\partial x_n} = 0 \right\}$$

When $f = g_1 \cdot h_1 + \ldots + g_k \cdot h_k$, then

$$\{g_1 = h_1 = \ldots = g_k = h_k = 0\} \subseteq \operatorname{Sing}(f)$$

and so $\dim \operatorname{Sing}(f) \ge n - 2\operatorname{str}(f)$.

3 Every polynomial in $\mathbb{C}[x, y]_d$ is reducible. Hence

$$f\in \mathbb{C}[x,y]_d \Rightarrow \mathrm{str}(f) \leq 1$$

Example

Consider $f = x_1^d + \ldots + x_n^d$.

We have

$$f = \begin{cases} (x_1^d + x_2^d) + \ldots + (x_{2k-1}^d + x_{2k}^d) & \text{if } n = 2k\\ (x_1^d + x_2^d) + \ldots + (x_{2k-1}^d + x_{2k}^d) + x_{2k+1}^d & \text{if } n = 2k+1 \end{cases}$$

and so $\operatorname{str}(f) \le \lceil n/2 \rceil$.

The singular locus

 $\operatorname{Sing}(f) = \{ dx_1^{d-1} = \ldots = dx_n^{d-1} = 0 \} = \{ (0, \ldots, 0) \} \subseteq \mathbb{C}^n$ has dimenion $0 \ge n - 2\operatorname{str}(f)$. So $\operatorname{str}(f) \ge \lceil n/2 \rceil$.

So $\operatorname{str}(f) = \lceil n/2 \rceil$.

Theorem

For every $k \ge 0$, the set $\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \le k\}$ is closed.

What about $\{f \in \mathbb{C}[x_1, \ldots, x_n]_d \mid \operatorname{str}(f) \leq k\}$?

For k = 1, yes. (union of images of projective morphisms). For k = 2, I don't know.

For d = 2, yes. (rank of symmetric matrices) For d = 3, yes. (slice rank of polynomials)

Example (k = 3, d = 4)

$$^{1}/_{t}(x^{2}+tg)(y^{2}+tf)-^{1}/_{t}(u^{2}-tq)(v^{2}-tp)-^{1}/_{t}(xy-uv)(xy+uv)$$

- **1** It has strength ≤ 3 .
- 2 For $t \to 0$, we get $x^2f + y^2g + u^2p + v^2q$.

IAS INSTITUTE FOR

IAS INSTITUTE FOR ADVANCED STUDY

Theorem (Ballico-B-Oneto-Ventura)

For $n \gg 0$, we have

$$str(x^{2}f + y^{2}g + u^{2}p + v^{2}q) = 4$$

for some $x, y, u, v \in \mathbb{C}[x_1, \dots, x_n]_1$ and $f, g, p, q \in \mathbb{C}[x_1, \dots, x_n]_2$.

Corollary

The set $\{f \in \mathbb{C}[x_1, \dots, x_n]_4 \mid \operatorname{str}(f) \leq 3\}$ is not closed for $n \gg 0$.

Question

Which n are high enough?

Question

What is the strength of $x^2a^2+y^2b^2+u^2c^2+v^2d^2$?

IAS INSTITUTE FOR

Proposition

We have

$$str(x^{2}f + y^{2}g + u^{2}p + v^{2}q) = 4$$

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2.

1/4 of the proof

We need to show, for example, that

 $x^{2}f + y^{2}g + u^{2}p + v^{2}q \neq \ell_{1} \cdot h_{1} + \ell_{2} \cdot h_{2} + \ell_{3} \cdot h_{3}$

for all $\ell_i \in \mathbb{C}[x, y, u, v, f, g, p, q]_1$ and $h_i \in \mathbb{C}[x, y, u, v, f, g, p, q]_3$.

Proposition

We have

$$str(x^{2}f + y^{2}g + u^{2}p + v^{2}q) = 4$$

when x, y, u, v and f, g, p, q are variables of degrees 1 and 2.

1/4 of the proof

We need to show, for example, that

$$\begin{aligned} x^2f+y^2g+u^2p+v^2q\neq\ell_1\cdot h_1+\ell_2\cdot h_2+\ell_3\cdot h_3\\ \text{for all }\ell_i\in\mathbb{C}[x,y,u,v]_1 \text{ and }h_i\in\mathbb{C}[x,y,u,v,f,g,p,q]_3. \end{aligned}$$

Think of $R = \mathbb{C}[x, y, u, v]$ as the set of coefficients. So $\ell_i \in R$ and $h_i \in R[f, g, p, q]$.

The coefficients of f, g, p, q on the right are all in (ℓ_1, ℓ_2, ℓ_3) . The coefficients x^2, y^2, u^2, v^2 on the left are not all (ℓ_1, ℓ_2, ℓ_3) .

Theorem

We have $\{\operatorname{rk}(A) \mid A \in \mathbb{C}^{n \times m}\} = \{0, 1, \dots, \min(n, m)\}.$

What about strength in $\mathbb{C}[x_1, \ldots, x_n]_d$?

- **1** We can write any polynomial f as $x_1 \cdot g_1 + \ldots + x_n \cdot g_n$. $\Rightarrow \operatorname{str}(f) \in \{0, 1, \ldots, n\}$
- **2** Suppose that f has maximal strength and write

$$f = \sum_{i=1}^{\operatorname{str}(f)} g_i \cdot h_i$$

Then $g_1 \cdot h_1 + \ldots + g_r \cdot h_r$ has strength r for $r = 0, \ldots, \operatorname{str}(f)$. $\Rightarrow {\operatorname{str}(f) \mid f \in \mathbb{C}[x_1, \ldots, x_n]_d}$ is an interval ${0, 1, \ldots, r}$.

IAS INSTITUTE FOR

Strength vs matrix rank

Take $d \geq 3$ and r minimal such that

$$r(n-r) \ge \binom{n-r+d-1}{d}.$$

This means that $r \approx n - \sqrt[d-1]{d!n}$.

Theorem (Harris)

A polynomial in $\mathbb{C}[x_1,\ldots,x_n]_d$ can be written as

 $\ell_1 h_1 + \ldots + \ell_r h_r$

with ℓ_1, \ldots, ℓ_r linear.

Theorem (Ballico-B-Oneto-Ventura)

A generic polynomial in $\mathbb{C}[x_1, \ldots, x_n]_d$ has strength r.

IAS INSTITUTE FOR

IAS INSTITUTE FO

For $d \geq 1$, we define

$$S_{\infty}^{d} = \left\{ \sum_{1 \le i_1 \le \dots \le i_d} a_{i_1 \cdots i_d} x_{i_1} \cdots x_{i_d} \, \middle| \, a_{i_1 \cdots i_d} \in \mathbb{C} \right\}$$

to be the set of degree-d polynomial series.

Now
$$S_{\infty} = \mathbb{C} \oplus \bigoplus_{d \ge 1} S_{\infty}^d$$
 is a ring.

Definition

A system of variables is collection $(f_i)_{i \in I}$ such that

$$\begin{array}{rcl} \mathbb{C}[y_i \mid i \in I] & \to & S_{\infty} \\ & y_i & \mapsto & f_i \end{array}$$

is an isomorphism. A *part of a system of variables* is a subcollection of a system of variables.

IAS INSTITUTE FOR ADVANCED STUDY

Theorem (Erman-Sam-Snowden)

A system of variables exists (in more general settings).

Proof

Let F^d be the subspace of finite-strength elements of S^d_{∞} and take a collection $(f_i)_{i \in I_d}$ that maps to a basis of S^d_{∞}/F^d .

Take $I = \bigcup_{d \ge 1} I_d$. Then $(f_i)_{i \in I}$ is a system of variables.

Proposition

Let $(x, y, u, v, f, g, p, q) \in (S^1_\infty)^4 \times (S^2_\infty)^4$ be part of a system of variables. Then $\operatorname{str}(x^2f + y^2g + u^2p + v^2q) = 4$.

Setting $x_{n+1}, x_{n+2}, \ldots = 0$ for $n \gg 0$ yields the counter example.

What does a coordinate transform means in this setting?

Non-example

Take
$$f = x_1 + x_2 + \ldots$$
 and set $x_i \mapsto x_1$ for all $i \in \mathbb{N}$.

Definition

Let $f \in S^d_{\infty}$. Then a *coordinate transform* of f is

$$f(\ell_1, \ell_2, \ldots) \in S^d_{\infty}$$

where ℓ_1, ℓ_2, \ldots are linear forms in x_1, x_2, \ldots so that every variable x_i only appears in finitely many linear forms ℓ_j .

Example

$$(x_1 + x_2 + \ldots)^2$$
 is a coordinate transform of x_1^2 .

Definition

Let $f \in S^d_{\infty}$. Then a *coordinate transform* of f is

 $f(\ell_1, \ell_2, \ldots) \in S^d_\infty$

where ℓ_1, ℓ_2, \ldots are linear forms in x_1, x_2, \ldots so that every variable x_i only appears in finitely many linear forms ℓ_i .

Definition

We say that f specializes to g when g is a coordinate transform of f. We say that f, g are *isogenous* when they specialize to each other.

Question

What is the structure of the poset of isogenous classes?

IAS INSTITUTE FOR ADVANCED STUD

Example (d = 1)

The nonzero elements of S^1_{∞} form one isogeny class.

Example (d = 2)

f,g are isogeneous \Leftrightarrow associated matrices have same rank.

Proposition

If f specializes to g, then $str(g) \leq str(f)$.

Theorem (B-Danelon-Snowden)

The poset of infinite-strength isogeny classes in S^3_{∞} is $\mathbb{N} \cup \{\infty\}$.

Proposition

 $x_1^3 + x_2^3 + \dots$ does not specialize to $x_1 \cdot (x_2^2 + x_3^2 + \dots)$. **Proof.**

Let $\ell_1^3+\ell_2^3+\dots$ be a specialization of $x_1^3+x_2^3+\dots$. Then the set

 $J := \{ j \in \mathbb{N} \mid x_1 \text{ occurs in } \ell_j \}$

is finite. The series

$$\frac{\partial}{\partial x_1}(\ell_1^3 + \ell_2^3 + \ldots) = \sum_{j \in J} 3 \frac{\partial \ell_j}{\partial x_1} \ell_j^2$$

has strength $\leq \#J < \infty$.

Definition

The *residual rank* of $f \in S^d_\infty$ is

$$\operatorname{rrk}(f) = \operatorname{dim}\operatorname{span}\left\{\frac{\partial}{\partial x_i}f \mod F^d \,\middle|\, i \in \mathbb{N}\right\}$$

where $F^d \subseteq S^d_\infty$ is the subspace of finite-strength elements.

IAS INSTITUTE FOR

Residual rank

Definition

The *residual rank* of $f\in S^d_\infty$ is

$$\operatorname{rrk}(f) = \operatorname{dim}\operatorname{span}\left\{\frac{\partial}{\partial x_i}f \mod F^d \,\middle|\, i \in \mathbb{N}\right\}$$

where $F^d\subseteq S^d_\infty$ is the subspace of finite-strength elements.

Theorem (B-Danelon-Snowden)

The map rrk is an isomorphism between the poset of isogeny classes of S^3_{∞} and $\mathbb{N} \cup \{\infty\}$. Sketch of proof for finite rrk

Set $r = \operatorname{rrk}(f)$ and put the series f in standard form

$$f \simeq x_1 g_1 + \ldots + x_r g_r + h$$

where (g_1, \ldots, g_r, h) part of a system of variables and $\operatorname{rrk}(h) = 0$. Then show that all such tuples are isogenous.

Strength of (infinite) Polynomials

Thank you for your attention!