Strength and polynomial functors

Arthur Bik University of Bern

Seminar on Nonlinear Algebra, Leipzig, 22 January 2020

Infinite vectors and matrices

b UNIVERSITÄT BERN

Let K be an algebraically closed field of characteristic 0.

Definition:

- (1) An infinite vector is a map $v: \mathbb{N} \to K$.
- (2) An infinite matrix is a map $A: \mathbb{N} \times \mathbb{N} \to K$.

We write $v(i) = v_i$, $A(i, j) = A_{ij}$ and

$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \end{pmatrix}, \qquad A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \dots \\ A_{21} & A_{22} & A_{23} & \dots \\ A_{31} & A_{32} & A_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

b UNIVERSITÄT BERN

Definition: The rank of an infinite matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ is

 $\operatorname{rk}(A) := \sup\{\operatorname{rk}(B) \mid \text{finite submatrices } B \text{ of } A\} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$

Examples:

(1) The ranks of the matrices

$$I_{\infty} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 & \\ & & & \ddots \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} g & \\ & I_{\infty} \end{pmatrix} \text{ for } g \in \mathrm{GL}_n$$

are ∞ .

(2) For non-zero infinite vectors $v, w \in K^{\mathbb{N}}$, the infinite matrix vw^T given by $(vw^T)_{ij} = v_iw_j$ has rank 1.

UNIVERSITÄT BERN

Proposition:

 $A \in K^{\mathbb{N} \times \mathbb{N}} \text{ has rank} \leqslant k < \infty \Leftrightarrow A = \sum_{j=1}^k v_j w_j^T \text{ with } v_j, w_j \in K^{\mathbb{N}}$

Proof. The direction \leftarrow is easy.

Proposition:

 $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k < \infty \Leftrightarrow A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$ **Proof.** The direction \leftarrow is easy.

For \Rightarrow , assume for convenience that both A and its topleft $k \times k$ submatrix have rank k. Let $v_1, \ldots, v_k \in K^{\mathbb{N}}$ be the first k columns of A. Goal: prove that every column of A is a linear combination of v_1, \ldots, v_n .

Proposition:

 $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k < \infty \Leftrightarrow A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$ **Proof.** The direction \leftarrow is easy.

For \Rightarrow , assume for convenience that both A and its topleft $k \times k$ submatrix have rank k. Let $v_1, \ldots, v_k \in K^{\mathbb{N}}$ be the first k columns of A. Goal: prove that every column of A is a linear combination of v_1, \ldots, v_n . Let v' be another column of A and take

 $V_n := \{ (\lambda', \lambda_1, \dots, \lambda_k) \in K^{k+1} \mid \forall i \leq n : \lambda' v'_i = \lambda_1 v_{1i} + \dots + \lambda_k v_{ki} \}$ We have $V_{n+1} \subseteq V_n$ and $V_n \neq 0$ for all $n \in \mathbb{N}$.

Proposition:

 $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k < \infty \Leftrightarrow A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$ **Proof.** The direction \leftarrow is easy.

For \Rightarrow , assume for convenience that both A and its topleft $k \times k$ submatrix have rank k. Let $v_1, \ldots, v_k \in K^{\mathbb{N}}$ be the first k columns of A. Goal: prove that every column of A is a linear combination of v_1, \ldots, v_n . Let v' be another column of A and take

$$\begin{split} V_n &:= \{ (\lambda', \lambda_1, \dots, \lambda_k) \in K^{k+1} \mid \forall i \leq n : \lambda' v'_i = \lambda_1 v_{1i} + \dots + \lambda_k v_{ki} \} \\ \text{We have } V_{n+1} \subseteq V_n \text{ and } V_n \neq 0 \text{ for all } n \in \mathbb{N}. \\ \Rightarrow \bigcap_{n \in \mathbb{N}} V_n \neq 0 \\ \text{Take } (1, \lambda_1, \dots, \lambda_k) \in \bigcap_{n \in \mathbb{N}} V_n. \text{ Then } v' = \lambda_1 v_1 + \dots + \lambda_k v_k. \end{split}$$

The Zariski topology on $K^{\mathbb{N} \times \mathbb{N}}$

Definition: A polynomial function on $K^{\mathbb{N} \times \mathbb{N}}$ sends a matrix A to a finite polynomial expression of its entries A_{ij} . **Example**: $f(A) = A_{11}^3 A_{22} - A_{12} A_{21}$ **Nonexample**: $f(A) = A_{11}^2 + A_{22}^2 + A_{33}^3 + \dots$

The Zariski topology on $K^{\mathbb{N} \times \mathbb{N}}$

Definition: A polynomial function on $K^{\mathbb{N} \times \mathbb{N}}$ sends a matrix A to a finite polynomial expression of its entries A_{ij} . **Example**: $f(A) = A_{11}^3 A_{22} - A_{12} A_{21}$ **Nonexample**: $f(A) = A_{11}^2 + A_{22}^2 + A_{33}^3 + \dots$ **Definition**: A subset of $K^{\mathbb{N} \times \mathbb{N}}$ is Zariski-closed when it is of the form $\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid f(A) = 0 \text{ for all } f \in S\}$ where S is a set of polynomial functions on $K^{\mathbb{N} \times \mathbb{N}}$. **Example**: Take $k \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Then the set

$$\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\}$$

is Zariski-closed.

b

Fact: An $n \times m$ matrix A has rank $\min(n, m) \Leftrightarrow \overline{\operatorname{GL}_n \cdot A \cdot \operatorname{GL}_m} = K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} = K^{\mathbb{N} \times \mathbb{N}}$

b

Fact: An $n \times m$ matrix A has rank $\min(n, m) \Leftrightarrow \overline{\operatorname{GL}_n \cdot A \cdot \operatorname{GL}_m} = K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} = K^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If $\operatorname{rk}(A) = k < \infty$, then $\overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} \subseteq \{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leq k\} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$

Fact: An $n \times m$ matrix A has rank $\min(n, m) \Leftrightarrow \overline{\operatorname{GL}_n \cdot A \cdot \operatorname{GL}_m} = K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} = K^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If $\operatorname{rk}(A) = k < \infty$, then $\overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} \subseteq \{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$

(⇒) Suppose $\overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$. Then $f(\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}) = 0$ for some nonzero polynomial function f.

The function f uses only finitely many entries.

Fact: An $n \times m$ matrix A has rank $\min(n, m) \Leftrightarrow \overline{\operatorname{GL}_n \cdot A \cdot \operatorname{GL}_m} = K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} = K^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If $\operatorname{rk}(A) = k < \infty$, then $\overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} \subseteq \{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$

(⇒) Suppose $\overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$. Then $f(\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}) = 0$ for some nonzero polynomial function f.

The function f uses only finitely many entries.

⇒ The rank of a particular finite submatrix has to be non-maximal for every element in $GL_{\infty} \cdot A \cdot GL_{\infty}$.

 \Rightarrow The rank of a particular finite submatrix has to be non-maximal for every permutation of A.

 \Rightarrow The rank of A must be finite.

UNIVERSITÄT BERN

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.

Proposition:

The matrix A has rank $\leq k < \infty \Leftrightarrow A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$

Theorem:

The matrix A has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} = K^{\mathbb{N} \times \mathbb{N}}$

UNIVERSITÄT

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.

Proposition:

The matrix A has rank $\leq k < \infty \Leftrightarrow A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$

Theorem:

The matrix A has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} = K^{\mathbb{N} \times \mathbb{N}}$

Corollary: Precisely one of the following holds:

(1)
$$\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$$
 is dense in $K^{\mathbb{N} \times \mathbb{N}}$.
(2) $A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$.

Remark: Similar statements hold for:

- (1) Tuples of matrices (Draisma, Eggermont)
- (2) Homogeneous polynomials (B, Draisma, Eggermont)
- (3) Tensors

- (B, Draisma, Eggermont)

Similar statements

UNIVERSITÄT BERN

Definition: The rank of a tuple of matrices (A_1, \ldots, A_k) is rk $(A_1, \ldots, A_k) := \inf \{ \operatorname{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \mid (\lambda_1 : \cdots : \lambda_k) \in \mathbb{P}^{k-1} \}$

Definition: The strength of a homogeneous polynomial f of degree $d \ge 2$ is the minimal $k \le \infty$ such that $f = g_1h_1 + \cdots + g_kh_k$ with $\deg(g_i), \deg(h_i) < d$.

Definition: The flattening rank of a *d*-way tensor *t* is the minimal $k \leq \infty$ such that $t = f_1 + \cdots + f_k$ with each tensor f_i has some rank-1 flattening.

Why look at infinite objects?

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.

Corollary: Precisely one of the following holds: (1) $\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$ is dense in $K^{\mathbb{N} \times \mathbb{N}}$. (2) $A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$.

Let $X \subsetneq K^{\mathbb{N} \times \mathbb{N}}$ be a $(\operatorname{GL}_{\infty} \times \operatorname{GL}_{\infty})$ -stable Zariski-closed subset. $\Rightarrow \operatorname{rk}(X) \leqslant k$ for some $k < \infty$.

Why look at infinite objects?

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.

Corollary: Precisely one of the following holds: (1) $\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$ is dense in $K^{\mathbb{N} \times \mathbb{N}}$. (2) $A = \sum_{j=1}^{k} v_j w_j^T$ with $v_j, w_j \in K^{\mathbb{N}}$.

Let $X \subsetneq K^{\mathbb{N} \times \mathbb{N}}$ be a $(\operatorname{GL}_{\infty} \times \operatorname{GL}_{\infty})$ -stable Zariski-closed subset. $\Rightarrow \operatorname{rk}(X) \leq k$ for some $k < \infty$.

Let $X_n \subseteq K^{\mathbb{N} \times \mathbb{N}}$ be the projection on $K^{n \times n}$.

 \Rightarrow rk(B) \leqslant k for all $B \in X_n$.

 \Rightarrow Matrices $B \in X_n$ can always be expressed using 2k vectors.

Remark: The bound k does not depend on n.

Categories and functors

Definition: A category C has objects $C, D \in C$, morphisms $C \to D$ and compositions. Taking compositions is associative and for every object $C \in C$ there is an identity $id_C : C \to C$.

Examples:

(0) The category $\operatorname{Set}\nolimits.$ Objects are sets and morphisms are maps.

(1) The category ${\rm Vec.}$ Objects are finite-dimensional vector spaces and morphisms are linear maps.

(2) The category Top . Objects are topological spaces and morphisms are continious maps.

(3) For $k \in \mathbb{N}$, the category Vec^k . Objects are k-tuples $V = (V_1, \ldots, V_k)$ and morphisms are k-tuples $\ell = (\ell_1, \ldots, \ell_k)$.

Categories and functors

UNIVERSITÄT BERN

Let \mathcal{C}, \mathcal{D} be categories. **Definition**: A functor $F : \mathcal{C} \to \mathcal{D}$ assigns

- to every object $C \in \mathcal{C}$ an object $F(C) \in \mathcal{D}$
- to every morphism $\ell \colon C \to C'$ a morphism $F(\ell) \colon F(C) \to F(C')$

such that $F(\ell \circ \ell') = F(\ell) \circ F(\ell')$ and $F(\mathrm{id}_C) = \mathrm{id}_{F(C)}$.

Examples:

- (0) The functor For: $\operatorname{Vec} \to \operatorname{Set}$ with $\operatorname{For}(V) = V$ and $\operatorname{For}(\ell) = \ell$.
- (1) The functor Zar: Vec \rightarrow Top with Zar(V) = V and Zar $(\ell) = \ell$. (2) For $k \in \mathbb{N}$, the functor Δ : Vec \rightarrow Vec^k with $\Delta(V) = (V, \dots, V)$ and $\Delta(\ell) = (\ell, \dots, \ell)$.

 Vec^k = category of *k*-tuples of finite-dimensional vector spaces. **Definition**: A polynomial functor $P \colon \operatorname{Vec}^k \to \operatorname{Vec}$

- (1) assigns a vector space $P(V) \in \text{Vec}$ to every $V \in \text{Vec}^k$
- (2) assigns a polynomial map

to every pair $(V, W) \in \operatorname{Vec}^k \times \operatorname{Vec}^k$

such that $P(\operatorname{id}_V) = \operatorname{id}_{P(V)}$ and $P(\ell_1 \circ \ell_2) = P(\ell_1) \circ P(\ell_2)$.

Examples: Take $U \in \text{Vec}$ fixed and $i \in \{1, \dots, k\}$. (1) Take $C_U(V) = U$ for all $V \in \text{Vec}^k$ and $C_U(\ell) = \text{id}_U$ for all ℓ . (2) Take $T_i(V) = V_i$ for all $V \in \text{Vec}^k$ and $C_U(\ell) = \ell_i$ for all ℓ .

Polynomial functors as polynomials

Let P, Q be polynomial functors.

Definition: Define the direct sum $P \oplus Q$ by: $(P \oplus Q)(V) = P(V) \oplus Q(V)$ and $(P \oplus Q)(\ell)(v, w) = (P(\ell)(v), Q(\ell)(w))$

Definition: Define the tensor product $P \otimes Q$ by: $(P \otimes Q)(V) = P(V) \otimes Q(V)$ and $(P \otimes Q)(\ell)(v \otimes w) = P(\ell)(v) \otimes Q(\ell)(w)$

Examples:

(1) $T \oplus T$ is the polynomial functor of 2-tuples of vectors.

(2) $T_1 \otimes T_2$ is the polynomial functor of matrices.

(3) $T_1 \otimes \cdots \otimes T_k$ is the polynomial functor of k-way tensors.

Polynomial functors as polynomials

Let P, Q be polynomial functors.

Definition: The functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$.

Suppose that Q is a subfunctor of P.

Definition: Define the quotient P/Q by (P/Q)(V) = P(V)/Q(V).

Examples:

(1) $T \otimes T$ has S^2 and \bigwedge^2 as subfunctors. (2) $T^{\otimes k} := T \otimes \cdots \otimes T$ has S^d as subfunctor.

Polynomial functors as polynomials

Let P, Q be polynomial functors.

Definition: The functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$.

Suppose that Q is a subfunctor of P.

Definition: Define the quotient P/Q by (P/Q)(V) = P(V)/Q(V).

Examples:

(1) $T \otimes T$ has S^2 and \bigwedge^2 as subfunctors. (2) $T^{\otimes k} := T \otimes \cdots \otimes T$ has S^d as subfunctor.

Fact: Every polynomial functor can be obtained from the constants C_U and variables T_1, \ldots, T_k using direct sums, tensor products, subfunctors and quotients.

Polynomial functors as topological spaces

Definition: A closed subset $X \subseteq P$ assigns a closed subset

$$X(V) \subseteq P(V)$$

to every $V \in \operatorname{Vec}^k$ such that $P(\ell)(X(V)) \subseteq X(W)$ for all $\ell \colon V \to W$.

Examples:

- (1) A closed subset of C_U is a closed subset of U.
- (2) {linearly dependent tuples of vectors} $\subseteq T \oplus \cdots \oplus T$.
- (3) {matrices of rank $\leq r$ } $\subseteq T_1 \otimes T_2$.
- (4) $\overline{\{\text{tensors of rank} \leq r\}} \subseteq T_1 \otimes \cdots \otimes T_k.$
- (5) {polynomials that are zero on a codim $\leq r$ subspace} $\subseteq S^d$.

Polynomial functors as topological spaces

Definition: A closed subset $X \subseteq P$ assigns a closed subset

$$X(V) \subseteq P(V)$$

to every $V \in \operatorname{Vec}^k$ such that $P(\ell)(X(V)) \subseteq X(W)$ for all $\ell \colon V \to W$.

Examples:

- (1) A closed subset of C_U is a closed subset of U.
- (2) {linearly dependent tuples of vectors} $\subseteq T \oplus \cdots \oplus T$.
- (3) {matrices of rank $\leq r$ } $\subseteq T_1 \otimes T_2$.
- (4) $\overline{\{\text{tensors of rank} \leq r\}} \subseteq T_1 \otimes \cdots \otimes T_k.$
- (5) {polynomials that are zero on a codim $\leq r$ subspace} $\subseteq S^d$.

Remark: For every $V \in \text{Vec}^k$, we have the action

$$GL(V) := GL(V_1) \times \dots \times GL(V_k) \rightarrow GL(P(V))$$
$$\ell = (\ell_1, \dots, \ell_k) \mapsto P(\ell)$$

Morphisms between polynomial functors

Let P, Q be polynomial functors.

Definition: A polynomial transformation $\alpha \colon Q \to P$ is a family $(\alpha_V \colon Q(V) \to P(V))_{V \in \operatorname{Vec}^k}$

of polynomial maps such that

$$Q(V) \xrightarrow{\alpha_V} P(V)$$

$$\downarrow Q(\ell) \qquad \qquad \downarrow P(\ell)$$

$$Q(W) \xrightarrow{\alpha_W} P(W)$$

commutes for all $\ell \colon V \to W$.

Example: Take $P = T_1 \otimes T_2$ and $Q = T_1 \oplus T_1 \oplus T_2 \oplus T_2$. Then

$$\begin{aligned} \alpha_{(V,W)} \colon V \oplus V \oplus W \oplus W &\to V \otimes W \\ (v_1, v_2, w_1, w_2) &\mapsto v_1 \otimes w_1 + v_2 \otimes w_1 \end{aligned}$$

defines an polynomial transformation $\alpha \colon Q \to P$.

Main theorem

UNIVERSITÄT REPN

Let P, Q be polynomial functors. Write Q < P when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then X = P or there are polynomial functors $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

Main theorem

UNIVERSITÄT BERN

Let P, Q be polynomial functors. Write Q < P when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then X = P or there are polynomial functors $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

Examples

- {matrices of rank $\leq r$ } = { $v_1 w_1^T + \dots + v_r w_r^T \mid v_i, w_i \text{ vectors}$ }
- {degree-*d* polynomials that are zero on a codim $\leq r$ subspace} = { $\ell_1 g_1 + \dots + \ell_r g_r \mid \deg(\ell_i) = 1, \deg(g_i) = d 1$ }

UNIVERSITÄT BERN

Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq \dots$ of closed subsets stabilizes.

UNIVERSITÄT BERN

Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq ...$ of closed subsets stabilizes.

Proof. Using induction on *P*: take $Q_1, \ldots, Q_k < P$ and $\alpha_i \colon Q_i \to P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

UNIVERSITÄT BERN

Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq ...$ of closed subsets stabilizes.

Proof. Using induction on *P*: take $Q_1, \ldots, Q_k < P$ and $\alpha_i \colon Q_i \to P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq Q$ be a constructible subset and let $\alpha \colon Q \to P$ be a morphism. Then $\alpha(X)$ is constructible.

More analogues from finite-dimensional affine algebraic geometry?

UNIVERSITÄT BERN

Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq ...$ of closed subsets stabilizes.

Proof. Using induction on *P*: take $Q_1, \ldots, Q_k < P$ and $\alpha_i \colon Q_i \to P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq Q$ be a constructible subset and let $\alpha \colon Q \to P$ be a morphism. Then $\alpha(X)$ is constructible.

More analogues from finite-dimensional affine algebraic geometry?

Thank you for your attention!

References

- Bik, Draisma, Eggermont, *Polynomials and tensors of bounded strength*, Commun. Contemp. Math. 21 (2019), no. 7, 1850062.
- Derksen, Eggermont, Snowden, *Topological noetherianity for cubic polynomials*, Algebra Number Theory 11(9), 2197–2212, 2017.
- Draisma, Topological Noetherianity of polynomial functors, J. Am. Math. Soc. 32(3), 691–707, 2019.
- Draisma, Eggermont, *Plücker varieties and higher secants of Sato's Grassmannian*, J. Reine Angew. Math. 737, 189–215, 2018.