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Infinite vectors and matrices

Let K be an algebraically closed field of characteristic 0.

Definition:
(1) An infinite vector is a map v : NÑ K.
(2) An infinite matrix is a map A : NˆNÑ K.

We write vpiq “ vi, Api, jq “ Aij and

v “

¨

˚

˚

˚

˝

v1
v2
v3
...

˛

‹

‹

‹

‚

, A “

¨

˚

˚

˚

˝

A11 A12 A13 . . .
A21 A22 A23 . . .
A31 A32 A33 . . .

...
...

...

˛

‹

‹

‹

‚



The rank of infinite matrices

Definition: The rank of an infinite matrix A P KNˆN is

rkpAq :“ suptrkpBq | finite submatrices B of Au P Zě0Yt8u

Examples:
(1) The ranks of the matrices

I8 “

¨

˚

˚

˚

˝

1
1

1
. . .

˛

‹

‹

‹

‚

and
ˆ

g
I8

˙

for g P GLn

are 8.
(2) For non-zero infinite vectors v, w P KN, the infinite matrix vwT given
by pvwT qij “ viwj has rank 1.



The rank of infinite matrices

Proposition:
A P KNˆN has rank ď k ă 8 ô A “

řk
j“1 vjw

T
j with vj , wj P KN

Proof. The direction ð is easy.

For ñ, assume for convenience that both A and its topleft k ˆ k
submatrix have rank k. Let v1, . . . , vk P KN be the first k columns of A.

Goal: prove that every column of A is a linear combination of v1, . . . , vn.

Let v1 be another column of A and take
Vn :“ tpλ1, λ1, . . . , λkq P K

k`1 | @i ď n : λ1v1i “ λ1v1i ` ¨ ¨ ¨ ` λkvkiu

We have Vn`1 Ď Vn and Vn ‰ 0 for all n P N.
ñ

Ş

nPN Vn ‰ 0

Take p1, λ1, . . . , λkq P
Ş

nPN Vn. Then v1 “ λ1v1 ` ¨ ¨ ¨ ` λkvk.
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The Zariski topology on KNˆN

Definition: A polynomial function on KNˆN sends a matrix A to a finite
polynomial expression of its entries Aij .

Example: fpAq “ A3
11A22 ´A12A21

Nonexample: fpAq “ A2
11 `A

2
22 `A

3
33 ` . . .

Definition: A subset of KNˆN is Zariski-closed when it is of the form
tA P KNˆN | fpAq “ 0 for all f P Su

where S is a set of polynomial functions on KNˆN.

Example: Take k P Zě0Yt8u. Then the set
tA P KNˆN | rkpAq ď ku

is Zariski-closed.
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The rank of infinite-by-infinite matrices

Fact: An nˆm matrix A has rank minpn,mq ô GLn ¨A ¨GLm “ Knˆm

Theorem: A matrix A P KNˆN has rank 8ô GL8 ¨A ¨GL8 “ KNˆN

Proof. (ð) If rkpAq “ k ă 8, then
GL8 ¨A ¨GL8 Ď tA P K

NˆN | rkpAq ď ku Ĺ KNˆN

(ñ) Suppose GL8 ¨A ¨GL8 Ĺ KNˆN. Then fpGL8 ¨A ¨GL8q “ 0 for
some nonzero polynomial function f .

The function f uses only finitely many entries.
ñ The rank of a particular finite submatrix has to be non-maximal for
every element in GL8 ¨A ¨GL8.
ñ The rank of a particular finite submatrix has to be non-maximal for
every permutation of A.
ñ The rank of A must be finite.
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The rank of infinite-by-infinite matrices

Let A P KNˆN be an infinite matrix.

Proposition:
The matrix A has rank ď k ă 8 ô A “

řk
j“1 vjw

T
j with vj , wj P KN

Theorem:
The matrix A has rank 8ô GL8 ¨A ¨GL8 “ KNˆN

Corollary: Precisely one of the following holds:
(1) GL8 ¨A ¨GL8 is dense in KNˆN.
(2) A “

řk
j“1 vjw

T
j with vj , wj P KN.

Remark: Similar statements hold for:
(1) Tuples of matrices (Draisma, Eggermont)
(2) Homogeneous polynomials (B, Draisma, Eggermont)
(3) Tensors (B, Draisma, Eggermont)
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Similar statements

Definition: The rank of a tuple of matrices pA1, . . . , Akq is
rkpA1, . . . , Akq :“ inftrkpλ1A1 ` ¨ ¨ ¨ ` λkAkq | pλ1 : ¨ ¨ ¨ : λkq P Pk´1u

Definition: The strength of a homogeneous polynomial f of degree
d ě 2 is the minimal k ď 8 such that f “ g1h1 ` ¨ ¨ ¨ ` gkhk with
degpgiq,degphiq ă d.

Definition: The flattening rank of a d-way tensor t is the minimal k ď 8
such that t “ f1 ` ¨ ¨ ¨ ` fk with each tensor fi has some rank-1
flattening.



Why look at infinite objects?

Let A P KNˆN be an infinite matrix.

Corollary: Precisely one of the following holds:
(1) GL8 ¨A ¨GL8 is dense in KNˆN.
(2) A “

řk
j“1 vjw

T
j with vj , wj P KN.

Let X Ĺ KNˆN be a pGL8ˆGL8q-stable Zariski-closed subset.
ñ rkpXq ď k for some k ă 8.

Let Xn Ď KNˆN be the projection on Knˆn.
ñ rkpBq ď k for all B P Xn.
ñ Matrices B P Xn can always be expressed using 2k vectors.

Remark: The bound k does not depend on n.
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Categories and functors

Definition: A category C has objects C,D P C, morphisms C Ñ D and
compositions. Taking compositions is associative and for every object
C P C there is an identity idC : C Ñ C.

Examples:
(0) The category Set. Objects are sets and morphisms are maps.
(1) The category Vec. Objects are finite-dimensional vector spaces and
morphisms are linear maps.
(2) The category Top. Objects are topological spaces and morphisms
are continious maps.
(3) For k P N, the category Veck. Objects are k-tuples V “ pV1, . . . , Vkq
and morphisms are k-tuples ` “ p`1, . . . , `kq.



Categories and functors

Let C,D be categories.
Definition: A functor F : C Ñ D assigns

‚ to every object C P C an object F pCq P D
‚ to every morphism ` : C Ñ C 1 a morphism F p`q : F pCq Ñ F pC 1q

such that F p` ˝ `1q “ F p`q ˝ F p`1q and F pidCq “ idF pCq.

Examples:
(0) The functor For: Vec Ñ Set with ForpV q “ V and Forp`q “ `.
(1) The functor Zar: Vec Ñ Top with ZarpV q “ V and Zarp`q “ `.
(2) For k P N, the functor ∆: Vec Ñ Veck with ∆pV q “ pV, . . . , V q and
∆p`q “ p`, . . . , `q.



Polynomial functors as polynomials

Veck “ category of k-tuples of finite-dimensional vector spaces.

Definition: A polynomial functor P : Veck Ñ Vec

(1) assigns a vector space P pV q P Vec to every V P Veck

(2) assigns a polynomial map
MorpV,W q Ñ HompP pV q, P pW qq

` ÞÑ P p`q

to every pair pV,W q P Veck ˆVeck

such that P pidV q “ idP pV q and P p`1 ˝ `2q “ P p`1q ˝ P p`2q.

Examples: Take U P Vec fixed and i P t1, . . . , ku.
(1) Take CU pV q “ U for all V P Veck and CU p`q “ idU for all `.
(2) Take TipV q “ Vi for all V P Veck and CU p`q “ `i for all `.



Polynomial functors as polynomials

Let P,Q be polynomial functors.

Definition: Define the direct sum P ‘Q by:
pP ‘QqpV q “ P pV q‘QpV q and pP ‘Qqp`qpv, wq “ pP p`qpvq, Qp`qpwqq

Definition: Define the tensor product P bQ by:
pPbQqpV q “ P pV qbQpV q and pPbQqp`qpvbwq “ P p`qpvqbQp`qpwq

Examples:
(1) T ‘ T is the polynomial functor of 2-tuples of vectors.
(2) T1 b T2 is the polynomial functor of matrices.
(3) T1 b ¨ ¨ ¨ b Tk is the polynomial functor of k-way tensors.



Polynomial functors as polynomials

Let P,Q be polynomial functors.

Definition: The functor Q is a subfunctor of P when QpV q Ď P pV q.

Suppose that Q is a subfunctor of P .

Definition: Define the quotient P {Q by pP {QqpV q “ P pV q{QpV q.

Examples:
(1) T b T has S2 and

Ź2 as subfunctors.
(2) Tbk :“ T b ¨ ¨ ¨ b T has Sd as subfunctor.

Fact: Every polynomial functor can be obtained from the constants CU
and variables T1, . . . , Tk using direct sums, tensor products, subfunctors
and quotients.



Polynomial functors as polynomials

Let P,Q be polynomial functors.

Definition: The functor Q is a subfunctor of P when QpV q Ď P pV q.

Suppose that Q is a subfunctor of P .

Definition: Define the quotient P {Q by pP {QqpV q “ P pV q{QpV q.

Examples:
(1) T b T has S2 and

Ź2 as subfunctors.
(2) Tbk :“ T b ¨ ¨ ¨ b T has Sd as subfunctor.

Fact: Every polynomial functor can be obtained from the constants CU
and variables T1, . . . , Tk using direct sums, tensor products, subfunctors
and quotients.



Polynomial functors as topological spaces

Definition: A closed subset X Ď P assigns a closed subset
XpV q Ď P pV q

to every V P Veck such that P p`qpXpV qq Ď XpW q for all ` : V ÑW .

Examples:
(1) A closed subset of CU is a closed subset of U .
(2) tlinearly dependent tuples of vectorsu Ď T ‘ ¨ ¨ ¨ ‘ T .
(3) tmatrices of rank ď ru Ď T1 b T2.
(4) ttensors of rank ď ru Ď T1 b ¨ ¨ ¨ b Tk.
(5) tpolynomials that are zero on a codim ď r subspaceu Ď Sd.

Remark: For every V P Veck, we have the action
GLpV q :“ GLpV1q ˆ ¨ ¨ ¨ ˆGLpVkq Ñ GLpP pV qq

` “ p`1, . . . , `kq ÞÑ P p`q
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Morphisms between polynomial functors

Let P,Q be polynomial functors.
Definition: A polynomial transformation α : QÑ P is a family

pαV : QpV q Ñ P pV qqV PVeck
of polynomial maps such that

QpV q

Qp`q

��

αV // P pV q

P p`q

��

QpW q
αW // P pW q

commutes for all ` : V ÑW .
Example: Take P “ T1 b T2 and Q “ T1 ‘ T1 ‘ T2 ‘ T2. Then

αpV,W q : V ‘ V ‘W ‘W Ñ V bW

pv1, v2, w1, w2q ÞÑ v1 b w1 ` v2 b w2

defines an polynomial transformation α : QÑ P .



Main theorem

Let P,Q be polynomial functors. Write Q ă P when Qpdq is a quotient of
Ppdq where d is maximal with Qpdq fl Ppdq.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden)
Let X Ď P be a closed subset. Then X “ P or there are polynomial
functors Q1, . . . , Qk ă P and αi : Qi Ñ P such that X Ď

Ť

i impαiq.

Examples

‚ tmatrices of rank ď ru “ tv1w
T
1 ` ¨ ¨ ¨ ` vrw

T
r | vi, wi vectorsu

‚ tdegree-d polynomials that are zero on a codim ď r subspaceu “
t`1g1 ` ¨ ¨ ¨ ` `rgr | degp`iq “ 1,degpgiq “ d´ 1u
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Applications

Theorem (Draisma)
Every descending chain P Ľ X1 Ě X2 Ě ... of closed subsets stabilizes.

Proof. Using induction on P : take Q1, . . . , Qk ă P and αi : Qi Ñ P
such that X1 Ď

Ť

i impαiq and pull back the chain of closed subsets
along each αi. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let X Ď Q be a constructible subset and let α : QÑ P be a morphism.
Then αpXq is constructible.

More analogues from finite-dimensional affine algebraic geometry?

Thank you for your attention!
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