Strength and polynomial functors

Arthur Bik
University of Bern

Seminar on Nonlinear Algebra, Leipzig, 22 January 2020

Infinite vectors and matrices

Let K be an algebraically closed field of characteristic 0 .

Definition:

(1) An infinite vector is a map $v: \mathbb{N} \rightarrow K$.
(2) An infinite matrix is a map $A: \mathbb{N} \times \mathbb{N} \rightarrow K$.

We write $v(i)=v_{i}, A(i, j)=A_{i j}$ and

$$
v=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots
\end{array}\right), \quad A=\left(\begin{array}{cccc}
A_{11} & A_{12} & A_{13} & \ldots \\
A_{21} & A_{22} & A_{23} & \ldots \\
A_{31} & A_{32} & A_{33} & \ldots \\
\vdots & \vdots & \vdots &
\end{array}\right)
$$

The rank of infinite matrices

Definition: The rank of an infinite matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ is

$$
\operatorname{rk}(A):=\sup \{\operatorname{rk}(B) \mid \text { finite submatrices } B \text { of } A\} \in \mathbb{Z}_{\geqslant 0} \cup\{\infty\}
$$

Examples:

(1) The ranks of the matrices

$$
I_{\infty}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & \ddots .
\end{array}\right) \text { and }\left(\begin{array}{ll}
g & \\
& I_{\infty}
\end{array}\right) \text { for } g \in \mathrm{GL}_{n}
$$

are ∞.
(2) For non-zero infinite vectors $v, w \in K^{\mathbb{N}}$, the infinite matrix $v w^{T}$ given by $\left(v w^{T}\right)_{i j}=v_{i} w_{j}$ has rank 1 .

The rank of infinite matrices

Proposition:

$A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$
Proof. The direction \Leftarrow is easy.

The rank of infinite matrices

Proposition:

$A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$
Proof. The direction \Leftarrow is easy.
For \Rightarrow, assume for convenience that both A and its topleft $k \times k$ submatrix have rank k. Let $v_{1}, \ldots, v_{k} \in K^{\mathbb{N}}$ be the first k columns of A.
Goal: prove that every column of A is a linear combination of v_{1}, \ldots, v_{n}.

The rank of infinite matrices

Proposition:

$A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$
Proof. The direction \Leftarrow is easy.
For \Rightarrow, assume for convenience that both A and its topleft $k \times k$ submatrix have rank k. Let $v_{1}, \ldots, v_{k} \in K^{\mathbb{N}}$ be the first k columns of A. Goal: prove that every column of A is a linear combination of v_{1}, \ldots, v_{n}. Let v^{\prime} be another column of A and take

$$
V_{n}:=\left\{\left(\lambda^{\prime}, \lambda_{1}, \ldots, \lambda_{k}\right) \in K^{k+1} \mid \forall i \leqslant n: \lambda^{\prime} v_{i}^{\prime}=\lambda_{1} v_{1 i}+\cdots+\lambda_{k} v_{k i}\right\}
$$

We have $V_{n+1} \subseteq V_{n}$ and $V_{n} \neq 0$ for all $n \in \mathbb{N}$.

The rank of infinite matrices

Proposition:

$A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$
Proof. The direction \Leftarrow is easy.
For \Rightarrow, assume for convenience that both A and its topleft $k \times k$ submatrix have rank k. Let $v_{1}, \ldots, v_{k} \in K^{\mathbb{N}}$ be the first k columns of A. Goal: prove that every column of A is a linear combination of v_{1}, \ldots, v_{n}.
Let v^{\prime} be another column of A and take

$$
V_{n}:=\left\{\left(\lambda^{\prime}, \lambda_{1}, \ldots, \lambda_{k}\right) \in K^{k+1} \mid \forall i \leqslant n: \lambda^{\prime} v_{i}^{\prime}=\lambda_{1} v_{1 i}+\cdots+\lambda_{k} v_{k i}\right\}
$$

We have $V_{n+1} \subseteq V_{n}$ and $V_{n} \neq 0$ for all $n \in \mathbb{N}$.
$\Rightarrow \bigcap_{n \in \mathbb{N}} V_{n} \neq 0$
Take $\left(1, \lambda_{1}, \ldots, \lambda_{k}\right) \in \bigcap_{n \in \mathbb{N}} V_{n}$. Then $v^{\prime}=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}$.

The Zariski topology on $K^{\mathbb{N} \times \mathbb{N}}$

Definition: A polynomial function on $K^{\mathbb{N} \times \mathbb{N}}$ sends a matrix A to a finite polynomial expression of its entries $A_{i j}$.
Example: $f(A)=A_{11}^{3} A_{22}-A_{12} A_{21}$
Nonexample: $f(A)=A_{11}^{2}+A_{22}^{2}+A_{33}^{3}+\ldots$

The Zariski topology on $K^{\mathbb{N} \times \mathbb{N}}$

Definition: A polynomial function on $K^{\mathbb{N} \times \mathbb{N}}$ sends a matrix A to a finite polynomial expression of its entries $A_{i j}$.
Example: $f(A)=A_{11}^{3} A_{22}-A_{12} A_{21}$
Nonexample: $f(A)=A_{11}^{2}+A_{22}^{2}+A_{33}^{3}+\ldots$
Definition: A subset of $K^{\mathbb{N} \times \mathbb{N}}$ is Zariski-closed when it is of the form

$$
\left\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid f(A)=0 \text { for all } f \in S\right\}
$$

where S is a set of polynomial functions on $K^{\mathbb{N} \times \mathbb{N}}$.
Example: Take $k \in \mathbb{Z}_{\geqslant 0} \cup\{\infty\}$. Then the set

$$
\left\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\right\}
$$

is Zariski-closed.

The rank of infinite-by-infinite matrices

Fact: An $n \times m$ matrix A has rank $\min (n, m) \Leftrightarrow \overline{\mathrm{GL}_{n} \cdot A \cdot \mathrm{GL}_{m}}=K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=K^{\mathbb{N} \times \mathbb{N}}$

The rank of infinite-by-infinite matrices

Fact: An $n \times m$ matrix A has rank $\min (n, m) \Leftrightarrow \overline{\mathrm{GL}_{n} \cdot A \cdot \mathrm{GL}_{m}}=K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=K^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If $\operatorname{rk}(A)=k<\infty$, then

$$
\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}} \subseteq\left\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\right\} \subsetneq K^{\mathbb{N} \times \mathbb{N}}
$$

The rank of infinite-by-infinite matrices

Fact: An $n \times m$ matrix A has rank $\min (n, m) \Leftrightarrow \overline{\mathrm{GL}_{n} \cdot A \cdot \mathrm{GL}_{m}}=K^{n \times m}$ Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=K^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If $\operatorname{rk}(A)=k<\infty$, then

$$
\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}} \subseteq\left\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\right\} \subsetneq K^{\mathbb{N} \times \mathbb{N}}
$$

(\Rightarrow) Suppose $\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$. Then $f\left(\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}\right)=0$ for some nonzero polynomial function f.
The function f uses only finitely many entries.

The rank of infinite-by-infinite matrices

Fact: An $n \times m$ matrix A has rank $\min (n, m) \Leftrightarrow \overline{\mathrm{GL}_{n} \cdot A \cdot \mathrm{GL}_{m}}=K^{n \times m}$
Theorem: A matrix $A \in K^{\mathbb{N} \times \mathbb{N}}$ has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=K^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If $\operatorname{rk}(A)=k<\infty$, then

$$
\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}} \subseteq\left\{A \in K^{\mathbb{N} \times \mathbb{N}} \mid \operatorname{rk}(A) \leqslant k\right\} \subsetneq K^{\mathbb{N} \times \mathbb{N}}
$$

(\Rightarrow) Suppose $\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}} \subsetneq K^{\mathbb{N} \times \mathbb{N}}$. Then $f\left(\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}\right)=0$ for some nonzero polynomial function f.
The function f uses only finitely many entries.
\Rightarrow The rank of a particular finite submatrix has to be non-maximal for every element in $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$.
\Rightarrow The rank of a particular finite submatrix has to be non-maximal for every permutation of A.
\Rightarrow The rank of A must be finite.

The rank of infinite-by-infinite matrices

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.

Proposition:

The matrix A has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$
Theorem:
The matrix A has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=K^{\mathbb{N} \times \mathbb{N}}$

The rank of infinite-by-infinite matrices

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.

Proposition:

The matrix A has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$

Theorem:

The matrix A has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=K^{\mathbb{N} \times \mathbb{N}}$
Corollary: Precisely one of the following holds:
(1) $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$ is dense in $K^{\mathbb{N} \times \mathbb{N}}$.
(2) $A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$.

Remark: Similar statements hold for:
(1) Tuples of matrices
(Draisma, Eggermont)
(2) Homogeneous polynomials
(B, Draisma, Eggermont)
(3) Tensors
(B, Draisma, Eggermont)

Similar statements

Definition: The rank of a tuple of matrices $\left(A_{1}, \ldots, A_{k}\right)$ is

$$
\operatorname{rk}\left(A_{1}, \ldots, A_{k}\right):=\inf \left\{\operatorname{rk}\left(\lambda_{1} A_{1}+\cdots+\lambda_{k} A_{k}\right) \mid\left(\lambda_{1}: \cdots: \lambda_{k}\right) \in \mathbb{P}^{k-1}\right\}
$$

Definition: The strength of a homogeneous polynomial f of degree $d \geqslant 2$ is the minimal $k \leqslant \infty$ such that $f=g_{1} h_{1}+\cdots+g_{k} h_{k}$ with $\operatorname{deg}\left(g_{i}\right), \operatorname{deg}\left(h_{i}\right)<d$.
Definition: The flattening rank of a d-way tensor t is the minimal $k \leqslant \infty$ such that $t=f_{1}+\cdots+f_{k}$ with each tensor f_{i} has some rank-1 flattening.

Why look at infinite objects?

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.
Corollary: Precisely one of the following holds:
(1) $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$ is dense in $K^{\mathbb{N} \times \mathbb{N}}$.
(2) $A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$.

Let $X \subsetneq K^{\mathbb{N} \times \mathbb{N}}$ be a $\left(\mathrm{GL}_{\infty} \times \mathrm{GL}_{\infty}\right)$-stable Zariski-closed subset.
$\Rightarrow \operatorname{rk}(X) \leqslant k$ for some $k<\infty$.

Why look at infinite objects?

Let $A \in K^{\mathbb{N} \times \mathbb{N}}$ be an infinite matrix.
Corollary: Precisely one of the following holds:
(1) $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$ is dense in $K^{\mathbb{N} \times \mathbb{N}}$.
(2) $A=\sum_{j=1}^{k} v_{j} w_{j}^{T}$ with $v_{j}, w_{j} \in K^{\mathbb{N}}$.

Let $X \subsetneq K^{\mathbb{N} \times \mathbb{N}}$ be a $\left(\mathrm{GL}_{\infty} \times \mathrm{GL}_{\infty}\right)$-stable Zariski-closed subset.
$\Rightarrow \operatorname{rk}(X) \leqslant k$ for some $k<\infty$.
Let $X_{n} \subseteq K^{\mathbb{N} \times \mathbb{N}}$ be the projection on $K^{n \times n}$.
$\Rightarrow \mathrm{rk}(B) \leqslant k$ for all $B \in X_{n}$.
\Rightarrow Matrices $B \in X_{n}$ can always be expressed using $2 k$ vectors.
Remark: The bound k does not depend on n.

Categories and functors

Definition: A category \mathcal{C} has objects $C, D \in \mathcal{C}$, morphisms $C \rightarrow D$ and compositions. Taking compositions is associative and for every object $C \in \mathcal{C}$ there is an identity $\mathrm{id}_{C}: C \rightarrow C$.

Examples:

(0) The category Set. Objects are sets and morphisms are maps.
(1) The category Vec. Objects are finite-dimensional vector spaces and morphisms are linear maps.
(2) The category Top. Objects are topological spaces and morphisms are continious maps.
(3) For $k \in \mathbb{N}$, the category Vec^{k}. Objects are k-tuples $V=\left(V_{1}, \ldots, V_{k}\right)$
and morphisms are k-tuples $\ell=\left(\ell_{1}, \ldots, \ell_{k}\right)$.

Categories and functors

Let \mathcal{C}, \mathcal{D} be categories.
Definition: A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ assigns

- to every object $C \in \mathcal{C}$ an object $F(C) \in \mathcal{D}$
- to every morphism $\ell: C \rightarrow C^{\prime}$ a morphism $F(\ell): F(C) \rightarrow F\left(C^{\prime}\right)$
such that $F\left(\ell \circ \ell^{\prime}\right)=F(\ell) \circ F\left(\ell^{\prime}\right)$ and $F\left(\mathrm{id}_{C}\right)=\mathrm{id}_{F(C)}$.

Examples:

(0) The functor For: $\operatorname{Vec} \rightarrow$ Set with $\operatorname{For}(V)=V$ and $\operatorname{For}(\ell)=\ell$.
(1) The functor Zar: $\operatorname{Vec} \rightarrow$ Top with $\operatorname{Zar}(V)=V$ and $\operatorname{Zar}(\ell)=\ell$.
(2) For $k \in \mathbb{N}$, the functor Δ : Vec $\rightarrow \operatorname{Vec}^{k}$ with $\Delta(V)=(V, \ldots, V)$ and $\Delta(\ell)=(\ell, \ldots, \ell)$.

Polynomial functors as polynomials

$\mathrm{Vec}^{k}=$ category of k-tuples of finite-dimensional vector spaces.
Definition: A polynomial functor $P: \mathrm{Vec}^{k} \rightarrow \mathrm{Vec}$
(1) assigns a vector space $P(V) \in \operatorname{Vec}$ to every $V \in \operatorname{Vec}^{k}$
(2) assigns a polynomial map

$$
\begin{aligned}
\operatorname{Mor}(V, W) & \rightarrow \operatorname{Hom}(P(V), P(W)) \\
\ell & \mapsto P(\ell)
\end{aligned}
$$

to every pair $(V, W) \in \operatorname{Vec}^{k} \times \operatorname{Vec}^{k}$
such that $P\left(\mathrm{id}_{V}\right)=\operatorname{id}_{P(V)}$ and $P\left(\ell_{1} \circ \ell_{2}\right)=P\left(\ell_{1}\right) \circ P\left(\ell_{2}\right)$.
Examples: Take $U \in \operatorname{Vec}$ fixed and $i \in\{1, \ldots, k\}$.
(1) Take $C_{U}(V)=U$ for all $V \in \mathrm{Vec}^{k}$ and $C_{U}(\ell)=\mathrm{id}_{U}$ for all ℓ.
(2) Take $T_{i}(V)=V_{i}$ for all $V \in \operatorname{Vec}^{k}$ and $C_{U}(\ell)=\ell_{i}$ for all ℓ.

Polynomial functors as polynomials

Let P, Q be polynomial functors.
Definition: Define the direct sum $P \oplus Q$ by:
$(P \oplus Q)(V)=P(V) \oplus Q(V)$ and $(P \oplus Q)(\ell)(v, w)=(P(\ell)(v), Q(\ell)(w))$
Definition: Define the tensor product $P \otimes Q$ by:
$(P \otimes Q)(V)=P(V) \otimes Q(V)$ and $(P \otimes Q)(\ell)(v \otimes w)=P(\ell)(v) \otimes Q(\ell)(w)$

Examples:

(1) $T \oplus T$ is the polynomial functor of 2 -tuples of vectors.
(2) $T_{1} \otimes T_{2}$ is the polynomial functor of matrices.
(3) $T_{1} \otimes \cdots \otimes T_{k}$ is the polynomial functor of k-way tensors.

Polynomial functors as polynomials

Let P, Q be polynomial functors.
Definition: The functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$.
Suppose that Q is a subfunctor of P.
Definition: Define the quotient P / Q by $(P / Q)(V)=P(V) / Q(V)$.

Examples:

(1) $T \otimes T$ has S^{2} and \bigwedge^{2} as subfunctors.
(2) $T^{\otimes k}:=T \otimes \cdots \otimes T$ has S^{d} as subfunctor.

Polynomial functors as polynomials

Let P, Q be polynomial functors.
Definition: The functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$.
Suppose that Q is a subfunctor of P.
Definition: Define the quotient P / Q by $(P / Q)(V)=P(V) / Q(V)$.

Examples:

(1) $T \otimes T$ has S^{2} and \bigwedge^{2} as subfunctors.
(2) $T^{\otimes k}:=T \otimes \cdots \otimes T$ has S^{d} as subfunctor.

Fact: Every polynomial functor can be obtained from the constants C_{U} and variables T_{1}, \ldots, T_{k} using direct sums, tensor products, subfunctors and quotients.

Polynomial functors as topological spaces

Definition: A closed subset $X \subseteq P$ assigns a closed subset

$$
X(V) \subseteq P(V)
$$

to every $V \in \mathrm{Vec}^{k}$ such that $P(\ell)(X(V)) \subseteq X(W)$ for all $\ell: V \rightarrow W$.

Examples:

(1) A closed subset of C_{U} is a closed subset of U.
(2) $\{$ linearly dependent tuples of vectors $\} \subseteq T \oplus \cdots \oplus T$.
(3) $\{$ matrices of rank $\leqslant r\} \subseteq T_{1} \otimes T_{2}$.
(4) $\{$ tensors of rank $\leqslant r\} \subseteq T_{1} \otimes \cdots \otimes T_{k}$.
(5) \{polynomials that are zero on a codim $\leqslant r$ subspace $\} \subseteq S^{d}$.

Polynomial functors as topological spaces

Definition: A closed subset $X \subseteq P$ assigns a closed subset

$$
X(V) \subseteq P(V)
$$

to every $V \in \mathrm{Vec}^{k}$ such that $P(\ell)(X(V)) \subseteq X(W)$ for all $\ell: V \rightarrow W$.

Examples:

(1) A closed subset of C_{U} is a closed subset of U.
(2) $\{$ linearly dependent tuples of vectors $\} \subseteq T \oplus \cdots \oplus T$.
(3) $\{$ matrices of rank $\leqslant r\} \subseteq T_{1} \otimes T_{2}$.
(4) $\{$ tensors of rank $\leqslant r\} \subseteq T_{1} \otimes \cdots \otimes T_{k}$.
(5) \{polynomials that are zero on a codim $\leqslant r$ subspace $\} \subseteq S^{d}$.

Remark: For every $V \in \mathrm{Vec}^{k}$, we have the action

$$
\begin{aligned}
\mathrm{GL}(V):=\mathrm{GL}\left(V_{1}\right) \times \cdots \times \mathrm{GL}\left(V_{k}\right) & \rightarrow \mathrm{GL}(P(V)) \\
\ell=\left(\ell_{1}, \ldots, \ell_{k}\right) & \mapsto P(\ell)
\end{aligned}
$$

Morphisms between polynomial functors

Let P, Q be polynomial functors.
Definition: A polynomial transformation $\alpha: Q \rightarrow P$ is a family

$$
\left(\alpha_{V}: Q(V) \rightarrow P(V)\right)_{V \in \mathrm{Vec}^{k}}
$$

of polynomial maps such that

$$
\begin{aligned}
& Q(V) \xrightarrow{\alpha_{V}} P(V) \\
& \stackrel{\downarrow(\ell)}{\mid} \mid \underset{ }{\mid} P(\ell) \\
& Q(W) \xrightarrow{\alpha_{W}} P(W)
\end{aligned}
$$

commutes for all $\ell: V \rightarrow W$.
Example: Take $P=T_{1} \otimes T_{2}$ and $Q=T_{1} \oplus T_{1} \oplus T_{2} \oplus T_{2}$. Then

$$
\begin{aligned}
\alpha_{(V, W)}: V \oplus V \oplus W \oplus W & \rightarrow V \otimes W \\
\left(v_{1}, v_{2}, w_{1}, w_{2}\right) & \mapsto
\end{aligned} v_{1} \otimes w_{1}+v_{2} \otimes w_{2}
$$

defines an polynomial transformation $\alpha: Q \rightarrow P$.

Main theorem

Let P, Q be polynomial functors. Write $Q<P$ when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not \equiv P_{(d)}$.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq P$ be a closed subset. Then $X=P$ or there are polynomial functors $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$.

Let P, Q be polynomial functors. Write $Q<P$ when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not \not P_{(d)}$.

Dichotomy Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq P$ be a closed subset. Then $X=P$ or there are polynomial functors $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$.

Examples

- $\{$ matrices of rank $\leqslant r\}=\left\{v_{1} w_{1}^{T}+\cdots+v_{r} w_{r}^{T} \mid v_{i}, w_{i}\right.$ vectors $\}$
- $\{$ degree- d polynomials that are zero on a codim $\leqslant r$ subspace $\}=$ $\left\{\ell_{1} g_{1}+\cdots+\ell_{r} g_{r} \mid \operatorname{deg}\left(\ell_{i}\right)=1, \operatorname{deg}\left(g_{i}\right)=d-1\right\}$

Applications

\boldsymbol{u}^{b}

Theorem (Draisma)

Every descending chain $P \supsetneq X_{1} \supseteq X_{2} \supseteq \ldots$ of closed subsets stabilizes.

Applications

Theorem (Draisma)

Every descending chain $P \supsetneq X_{1} \supseteq X_{2} \supseteq \ldots$ of closed subsets stabilizes.
Proof. Using induction on P : take $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X_{1} \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$ and pull back the chain of closed subsets along each α_{i}. The resulting chains all have to stabilize.

Applications

Theorem (Draisma)

Every descending chain $P \supsetneq X_{1} \supseteq X_{2} \supseteq \ldots$ of closed subsets stabilizes.
Proof. Using induction on P : take $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X_{1} \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$ and pull back the chain of closed subsets along each α_{i}. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq Q$ be a constructible subset and let $\alpha: Q \rightarrow P$ be a morphism.
Then $\alpha(X)$ is constructible.
More analogues from finite-dimensional affine algebraic geometry?

Applications

Theorem (Draisma)

Every descending chain $P \supsetneq X_{1} \supseteq X_{2} \supseteq \ldots$ of closed subsets stabilizes.
Proof. Using induction on P : take $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X_{1} \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$ and pull back the chain of closed subsets along each α_{i}. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq Q$ be a constructible subset and let $\alpha: Q \rightarrow P$ be a morphism.
Then $\alpha(X)$ is constructible.
More analogues from finite-dimensional affine algebraic geometry?
Thank you for your attention!

References

E- Bik, Draisma, Eggermont, Polynomials and tensors of bounded strength, Commun. Contemp. Math. 21 (2019), no. 7, 1850062.
Derksen, Eggermont, Snowden, Topological noetherianity for cubic polynomials, Algebra Number Theory 11(9), 2197-2212, 2017.
E Draisma, Topological Noetherianity of polynomial functors, J. Am. Math. Soc. 32(3), 691-707, 2019.
E Draisma, Eggermont, Plücker varieties and higher secants of Sato's Grassmannian, J. Reine Angew. Math. 737, 189-215, 2018.

