Strength of Polynomials

Arthur Bik

Max-Planck-Institut für Mathematik in den Naturwissenschaften

MAX-PLANCK-GESELLSCHAFT

The X-rank

Let f be an element of a vector space V. Let $X \subseteq V$ be a subset.

Definition

The X-rank of f is:

- 0 for f = 0.
- 1 for $f \in X \setminus \{0\}$.
- r, with r minimal such that $f = x_1 + \ldots + x_r$ where $x_i \in X$.
- ∞ , when such an r does not exists.

Examples

- $K^{n \times m}$ with $X = \{vw^{\top} \mid v \in K^n, w \in K^m\}.$
- $K^{n_1} \otimes \cdots \otimes K^{n_d}$ with $X = \{v_1 \otimes \cdots \otimes v_d \mid v_i \in K^{n_i}\}.$
- $K^{\infty \times \infty}$ with $X = \{vw^{\top} \mid v \in K^{\infty}, w \in K^{\infty}\}.$
- $K[x_1, ..., x_n]_d$ with $X = \{g \cdot h \mid 0 < \deg(g), \deg(h) < d\}.$

Definition

The strength of f is the minimal number r such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$. Example

What is the strength of $f = x^2 + y^2 + z^2$?

- We have $\operatorname{str}(f) \leq 3$ since $f = x \cdot x + y \cdot y + z \cdot z$.
- We have $str(f) \neq 0$ since $f \neq 0$.
- We have $str(f) \neq 1$ since f is not reducible.
- Note that $f = (x + iy) \cdot (x iy) + z \cdot z$.

So $\operatorname{str}(f) = 2$ over $\mathbb C$ (but over $\mathbb R$ it would be 3).

Questions

How to compute the strength of a polynomial? Good bounds?

Reason 1 - Stillman's conjecture

The proof uses strength.

Reason 2 - Universality

Let $f \in K[x_1, \ldots, x_n]_d$ and ℓ_1, \ldots, ℓ_n be linear forms in y_1, \ldots, y_m . The polynomial

$$f(\ell_1,\ldots,\ell_n)\in K[y_1,\ldots,y_m]_d$$

is a coordinate transformation of f.

Let \mathcal{P} be a property of degree-d polynomials such that

f has \mathcal{P} \Leftrightarrow every coordinate transformation of f has \mathcal{P} **Theorem (Kazhdan-Ziegler, B-Danelon-Draisma-Eggermont)** Either all f have \mathcal{P} or there exists a $k \ge 0$ such that f has $\mathcal{P} \Rightarrow \operatorname{str}(f) < k$ $\{f \in \mathbb{C}[x_1, \dots, x_n]_d \mid \operatorname{str}(f) \leq k\}$ Zariski-closed?

For k = 1, yes. For k = 2, I don't know. For d = 2, yes. For d = 3, yes.

Theorem (Ballico-B-Oneto-Ventura)

The set $\{f \in \mathbb{C}[x_1, \ldots, x_n]_4 \mid \operatorname{str}(f) \leq 3\}$ is not closed for $n \gg 0$.

$$\begin{array}{c} 1/t(x^2+tg)(y^2+tf) - 1/t(u^2-tq)(v^2-tp) - 1/t(xy-uv)(xy+uv) \\ & \downarrow \\ & x^2f + y^2g + u^2p + v^2q \end{array}$$

Questions

Explicit example? Bound on n? $x^2a^2 + y^2b^2 + u^2c^2 + v^2d^2$?

Take
$$d \ge 3$$
 and $r \approx n - \sqrt[d-1]{d!n}$ minimal such that
 $r(n-r) \ge \binom{d+n-1-r}{d}.$

Theorem (Harris)

A generic polynomial in $\mathbb{C}[x_1,\ldots,x_n]_d$ can be written as

$$\ell_1 h_1 + \ldots + \ell_r h_r$$

with ℓ_1, \ldots, ℓ_r linear.

Theorem (Ballico-B-Oneto-Ventura)

This does not hold when r is smaller and/or not all ℓ_i linear.

Questions

How to find high-strength polynomials? Equations?

 ${\bf Q}:$ How to compute best low-strength approximations of a polynomial?

 $\mathbf{Q}:$ What is the highest possible strength of a limit of strength $\leq k$ polynomials?

Thanks for your attention!