h

Strength and polynomial functors

Arthur Bik University of Bern

Graduate Colloquium, Geneva, 19 November 2019

The rank of infinite-by-infinite matrices

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix A is

 $\operatorname{rk}(A) := \sup\{\operatorname{rk}(B) \mid \text{finite submatrices } B \text{ of } A\} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$

Examples:

(1) The rank of the matrix

$$\begin{pmatrix} 1 & * & \dots & \dots & \dots \\ 0 & 1 & * & \dots & \dots \\ \vdots & 0 & 1 & * & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \end{pmatrix}$$

is ∞ .

(2) For linearly independent subsets $\{v_1, \ldots, v_k\}, \{w_1, \ldots, w_k\} \subseteq \mathbb{C}^{\mathbb{N}}$ the matrix $v_1 w_1^T + \cdots + v_k w_k^T$ has rank k.

The rank of infinite-by-infinite matrices

Lemma:

 $A \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ has rank $\leq k < \infty \Leftrightarrow A = \sum_{i=1}^{k} v_i w_i^T$ with $v_i, w_i \in \mathbb{C}^{\mathbb{N}}$ **Proof.** Assume *A* has rank *k*. Then *A* has a invertible $k \times k$ submatrix. Permute the columns of *A* so that the first *k* columns of *A* are linearly independent. Call these first *k* columns v_1, \ldots, v_k . To show that

$$A = \sum_{i=1}^{k} v_i w_i^T$$

for some $w_1, \ldots, w_k \in \mathbb{C}^{\mathbb{N}}$, we need to show that every column of A is a linear combination of v_1, \ldots, v_k . Let v be another column of A. Then every finite submatrix of $(v \ v_1 \ \ldots \ v_k)$ has rank $\leq k$. Consider the vector space $V_n = \{\lambda \in \mathbb{C}^{k+1} \mid \operatorname{pr}_n(\lambda_0 v - \lambda_1 v_1 + \cdots + \lambda_k v_k) = 0\} \neq 0$. We have $V_{n+1} \subseteq V_n$ for all n. It follows that $V = \bigcap_n V_n \neq 0$. Any nonzero element of V expresses v as a linear combination of v_1, \ldots, v_k .

The rank of infinite-by-infinite matrices

Fact: An $n \times m$ matrix A has rank $\min(n, m) \Leftrightarrow \overline{\operatorname{GL}_n \cdot A \cdot \operatorname{GL}_m} = \mathbb{C}^{n \times m}$ Theorem: An $\mathbb{N} \times \mathbb{N}$ matrix A has rank $\infty \Leftrightarrow \overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty} = \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ Proof. (\Leftarrow) If the matrix A has rank $k < \infty$, then $\overline{\operatorname{GL}_\infty \cdot A \cdot \operatorname{GL}_\infty}$ is contained in {matrices in $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ of rank $\leqslant k$ } $\subsetneq \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$.

(⇒) Suppose $\overline{\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}} \subsetneq \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$. Then there is a nonzero equation on $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ that is zero on $\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$. This equation uses only finitely many entries. So the rank of a particular finite submatrix has to be non-maximal for every element in $\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$. In particular, this is true for a permutations of *A*. So the rank of *A* must be finite. □

Corollary: Let A be an $\mathbb{N} \times \mathbb{N}$ matrix. Then either $\operatorname{GL}_{\infty} \cdot A \cdot \operatorname{GL}_{\infty}$ is dense in $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ or $A = \sum_{i=1}^{k} v_i w_i^T$ with $v_1, \ldots, v_k, w_1, \ldots, w_k \in \mathbb{C}^{\mathbb{N}}$.

Similar theorems

Definition: The rank of a tuple of $\mathbb{N} \times \mathbb{N}$ matrices (A_1, \ldots, A_k) is

 $\operatorname{rk}(A_1,\ldots,A_k) := \inf \{ \operatorname{rk}(\lambda_1 A_1 + \cdots + \lambda_k A_k) \mid (\lambda_1 : \cdots : \lambda_k) \in \mathbb{P}^{k-1} \}$

Theorem (Draisma-Eggermont) $\operatorname{rk}(A_1, \ldots, A_k) = \infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot (A_1, \ldots, A_k) \cdot \operatorname{GL}_{\infty}} = (\mathbb{C}^{\mathbb{N} \times \mathbb{N}})^k$

Definition: The q-rank of a series

$$f = a_{111}x_1^3 + a_{112}x_1^2x_2 + \dots + a_{ijk}x_ix_jx_k + \dots$$

is the minimal $k \leq \infty$ such that $f = \ell_1 q_1 + \cdots + \ell_k q_k$ with $\deg(\ell_i) = 1$.

Theorem (Derksen-Eggermont-Snowden) $\operatorname{qrk}(f) = \infty \Leftrightarrow \overline{\operatorname{GL}_{\infty} \cdot f} = \{ \text{all polynomial series of degree 3} \}$

Similar theorems

0 UNIVERSITÄT BERN

Take $d \ge 2$.

Definition (Ananyan-Hochster) The strength of a polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]_{(d)}$ is the minimal k such that

$$f = g_1 h_1 + \dots + g_k h_k$$

with $g_1, \ldots, g_k, h_1, \ldots, h_k \in \mathbb{C}[x_0, \ldots, x_n]$ homogeneous of degree < d. **Theorem** (B-Draisma-Eggermont) For every n, let $X_n \subseteq \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ be a closed subset such that: (*) We have $f \circ \ell \in X_m$ for all $f \in X_n$ and all linear maps $\ell \colon \mathbb{C}^m \to \mathbb{C}^n$. Then either $X_n = \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ for all $n \ge 0$ or there is a $k < \infty$ such that $\operatorname{str}(f) \le k$ for all $f \in X_n$ and $n \ge 0$. The semiring of functors $P \colon \text{Vec} \to \text{Vec}$

Definition: A functor $P \colon \text{Vec} \to \text{Vec}$ sends

$$V \mapsto P(V)$$

($\ell: V \to W$) $\mapsto (P(\ell): P(V) \to P(W))$

such that $P(id_V) = id_{P(V)}$ and $P(\varphi \circ \psi) = P(\varphi) \circ P(\psi)$. **Examples**: Take $U \in Vec$ fixed.

- $C_U : V \mapsto U, \ell \mapsto \mathrm{id}_U$
- $T: V \mapsto V, \ell \mapsto \ell$

You can add and multiply two functors $P, Q: \text{Vec} \rightarrow \text{Vec}$.

 $(P\oplus Q)(V)=P(V)\oplus Q(V),\quad (P\otimes Q)(V)=P(V)\otimes Q(V)$

Definition: The functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$ and $Q(\ell) = P(\ell)|_{Q(\ell)}$. In his case, we have the functor $V \mapsto P(V)/Q(V)$.

Polynomial functors as polynomials

UNIVERSITÄT BERN

Definition: The class of polynomial functors is the minimal class of functors $\text{Vec} \rightarrow \text{Vec}$ containing T and all C_U that is closed under addition, multiplication and taking subfunctors and quotients.

Examples

- Constants: $V \mapsto U$ for $U \in \text{Vec}$ fixed.
- Linear functors: $V \mapsto U \otimes V$ for $U \in \text{Vec}$ fixed.
- Matrices: $V \mapsto V \otimes V$
- Tensors: $V \mapsto V \otimes \cdots \otimes V$
- Polynomials: $V \mapsto S^d V$

Remark: The semiring of polynomial functors is graded.

Polynomial functors as topological spaces

Definition: Let P, Q be polynomial functors. A morphism $\alpha \colon Q \to P$ is a family $(\alpha_V \colon Q(V) \to P(V))_{V \in \text{Vec}}$ of polynomial maps such that

UNIVERSITÄT

$$Q(V) \xrightarrow{\alpha_V} P(V)$$

$$\downarrow Q(\ell) \qquad \qquad \downarrow P(\ell)$$

$$Q(W) \xrightarrow{\alpha_W} P(W)$$

commutes for all linear maps $\ell \colon V \to W$.

Definition: A closed subset $X \subseteq P$ sends

 $V \mapsto \text{closed subset } X(V) \subseteq P(V)$

such that $P(\ell)(X(V)) \subseteq X(W)$ for all linear maps $\ell \colon V \to W$.

The dichotomy

UNIVERSITÄT

Let P, Q be polynomial functors. Write Q < P when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \not\cong P_{(d)}$.

Theorem (B-Draisma-Eggermont-Snowden) Let $X \subseteq P$ be a closed subset. Then X = P or there are polynomial functors $Q_1, \ldots, Q_k \prec P$ and $\alpha_i \colon Q_i \to P$ such that $X \subseteq \bigcup_i \operatorname{im}(\alpha_i)$.

Examples

- {matrices of rank $\leq k$ } = { $v_1 w_1^T + \dots + v_k w_k^T \mid v_i, w_i \text{ vectors}$ }
- {degree-*d* polynomials that are zero on a codim-*k* subspace} = $\{\ell_1 g_1 + \dots + \ell_k g_k \mid \deg(\ell_i) = 1, \deg(g_i) = d 1\}$

Applications

The dichotomy can be used to prove all the previous theorems.

Theorem (Draisma)

Every descending chain $P \supseteq X_1 \supseteq X_2 \supseteq ...$ of closed subsets stabilizes.

Proof. Using induction on *P*: take $Q_1, \ldots, Q_k < P$ and $\alpha_i \colon Q_i \to P$ such that $X_1 \subseteq \bigcup_i \operatorname{im}(\alpha_i)$ and pull back the chain of closed subsets along each α_i . The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq Q$ be a constructible subset and let $\alpha \colon Q \to P$ be a morphism. Then $\alpha(X)$ is constructible.

More analogues of results from finite-dimensional algebraic geometry?

Thank you for your attention!

References

- Ananyan, Hochster, *Small subalgebras of polynomial rings and Stillman's conjecture*, J. Am. Math. Soc. (2019).
- Bik, Draisma, Eggermont, *Polynomials and tensors of bounded strength*, Commun. Contemp. Math. 21 (2019), no. 7, 1850062.
- Derksen, Eggermont, Snowden, *Topological noetherianity for cubic polynomials*, Algebra Number Theory 11(9), 2197–2212, 2017.
- Draisma, *Topological Noetherianity of polynomial functors*, J. Am. Math. Soc. 32(3), 691–707, 2019.
- Draisma, Eggermont, *Plücker varieties and higher secants of Sato's Grassmannian*, J. Reine Angew. Math. 737, 189–215, 2018.
- Kazhdan, Ziegler, *Properties of high rank subvarieties of affine spaces*, preprint.