Strength and polynomial functors

Arthur Bik

University of Bern

Graduate Colloquium, Geneva, 19 November 2019

The rank of infinite-by-infinite matrices

Definition: The rank of an $\mathbb{N} \times \mathbb{N}$ matrix A is

$$
\operatorname{rk}(A):=\sup \{\operatorname{rk}(B) \mid \text { finite submatrices } B \text { of } A\} \in \mathbb{Z}_{\geqslant 0} \cup\{\infty\}
$$

Examples:

(1) The rank of the matrix

$$
\left(\begin{array}{ccccc}
1 & * & \ldots & \ldots & \ldots \\
0 & 1 & * & \ldots & \ldots \\
\vdots & 0 & 1 & * & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

is ∞.
(2) For linearly independent subsets $\left\{v_{1}, \ldots, v_{k}\right\},\left\{w_{1}, \ldots, w_{k}\right\} \subseteq \mathbb{C}^{\mathbb{N}}$ the matrix $v_{1} w_{1}^{T}+\cdots+v_{k} w_{k}^{T}$ has rank k.

The rank of infinite-by-infinite matrices

Lemma:

$A \in \mathbb{C}^{\mathbb{N}} \times \mathbb{N}$ has rank $\leqslant k<\infty \Leftrightarrow A=\sum_{i=1}^{k} v_{i} w_{i}^{T}$ with $v_{i}, w_{i} \in \mathbb{C}^{\mathbb{N}}$
Proof. Assume A has rank k. Then A has a invertible $k \times k$ submatrix. Permute the columns of A so that the first k columns of A are linearly independent. Call these first k columns v_{1}, \ldots, v_{k}. To show that

$$
A=\sum_{i=1}^{k} v_{i} w_{i}^{T}
$$

for some $w_{1}, \ldots, w_{k} \in \mathbb{C}^{\mathbb{N}}$, we need to show that every column of A is a linear combination of v_{1}, \ldots, v_{k}. Let v be another column of A. Then every finite submatrix of $\left(v v_{1} \ldots v_{k}\right)$ has rank $\leqslant k$. Consider the vector space $V_{n}=\left\{\lambda \in \mathbb{C}^{k+1} \mid \operatorname{pr}_{n}\left(\lambda_{0} v-\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right)=0\right\} \neq 0$. We have $V_{n+1} \subseteq V_{n}$ for all n. It follows that $V=\bigcap_{n} V_{n} \neq 0$. Any nonzero element of V expresses v as a linear combination of v_{1}, \ldots, v_{k}.

The rank of infinite-by-infinite matrices

Fact: An $n \times m$ matrix A has rank $\min (n, m) \Leftrightarrow \overline{\mathrm{GL}_{n} \cdot A \cdot \mathrm{GL}_{m}}=\mathbb{C}^{n \times m}$
Theorem: An $\mathbb{N} \times \mathbb{N}$ matrix A has rank $\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}=\mathbb{C}^{\mathbb{N}} \times \mathbb{N}$ Proof. (\Leftarrow) If the matrix A has rank $k<\infty$, then $\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}}$ is contained in $\left\{\right.$ matrices in $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ of rank $\left.\leqslant k\right\} \subsetneq \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$.
(\Rightarrow) Suppose $\overline{\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}} \subsetneq \mathbb{C}^{\mathbb{N}} \times \mathbb{N}$. Then there is a nonzero equation on $\mathbb{C}^{\mathbb{N}} \times \mathbb{N}$ that is zero on $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$. This equation uses only finitely many entries. So the rank of a particular finite submatrix has to be non-maximal for every element in $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$. In particular, this is true for a permutations of A. So the rank of A must be finite.

Corollary: Let A be an $\mathbb{N} \times \mathbb{N}$ matrix. Then either $\mathrm{GL}_{\infty} \cdot A \cdot \mathrm{GL}_{\infty}$ is dense in $\mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ or $A=\sum_{i=1}^{k} v_{i} w_{i}^{T}$ with $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{k} \in \mathbb{C}^{\mathbb{N}}$.

\boldsymbol{u}^{b}

Similar theorems

Definition: The rank of a tuple of $\mathbb{N} \times \mathbb{N}$ matrices $\left(A_{1}, \ldots, A_{k}\right)$ is

$$
\operatorname{rk}\left(A_{1}, \ldots, A_{k}\right):=\inf \left\{\operatorname{rk}\left(\lambda_{1} A_{1}+\cdots+\lambda_{k} A_{k}\right) \mid\left(\lambda_{1}: \cdots: \lambda_{k}\right) \in \mathbb{P}^{k-1}\right\}
$$

Theorem (Draisma-Eggermont)
$\operatorname{rk}\left(A_{1}, \ldots, A_{k}\right)=\infty \Leftrightarrow \overline{\mathrm{GL}_{\infty} \cdot\left(A_{1}, \ldots, A_{k}\right) \cdot \mathrm{GL}_{\infty}}=\left(\mathbb{C}^{\mathbb{N} \times \mathbb{N}}\right)^{k}$
Definition: The q-rank of a series

$$
f=a_{111} x_{1}^{3}+a_{112} x_{1}^{2} x_{2}+\cdots+a_{i j k} x_{i} x_{j} x_{k}+\ldots
$$

is the minimal $k \leqslant \infty$ such that $f=\ell_{1} q_{1}+\cdots+\ell_{k} q_{k}$ with $\operatorname{deg}\left(\ell_{i}\right)=1$.
Theorem (Derksen-Eggermont-Snowden)
$\operatorname{qrk}(f)=\infty \Leftrightarrow \overline{\mathrm{GL}}_{\infty} \cdot f=\{$ all polynomial series of degree 3 \}

Similar theorems

Take $d \geqslant 2$.
Definition (Ananyan-Hochster)
The strength of a polynomial $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{(d)}$ is the minimal k such that

$$
f=g_{1} h_{1}+\cdots+g_{k} h_{k}
$$

with $g_{1}, \ldots, g_{k}, h_{1}, \ldots, h_{k} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ homogeneous of degree $<d$. Theorem (B-Draisma-Eggermont)
For every n, let $X_{n} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}$ be a closed subset such that: (*) We have $f \circ \ell \in X_{m}$ for all $f \in X_{n}$ and all linear maps $\ell: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$. Then either $X_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}$ for all $n \geqslant 0$ or there is a $k<\infty$ such that $\operatorname{str}(f) \leqslant k$ for all $f \in X_{n}$ and $n \geqslant 0$.

The semiring of functors $P: \mathrm{Vec} \rightarrow \mathrm{Vec}$

Definition: A functor P : Vec \rightarrow Vec sends

$$
\begin{aligned}
V & \mapsto P(V) \\
(\ell: V \rightarrow W) & \mapsto P(P(\ell): P(V) \rightarrow P(W))
\end{aligned}
$$

such that $P\left(\mathrm{id}_{V}\right)=\operatorname{id}_{P(V)}$ and $P(\varphi \circ \psi)=P(\varphi) \circ P(\psi)$.
Examples: Take $U \in \mathrm{Vec}$ fixed.

- $C_{U}: V \mapsto U, \ell \mapsto \mathrm{id}_{U}$
- $T: V \mapsto V, \ell \mapsto \ell$

You can add and multiply two functors $P, Q:$ Vec \rightarrow Vec.

$$
(P \oplus Q)(V)=P(V) \oplus Q(V), \quad(P \otimes Q)(V)=P(V) \otimes Q(V)
$$

Definition: The functor Q is a subfunctor of P when $Q(V) \subseteq P(V)$ and $Q(\ell)=\left.P(\ell)\right|_{Q(\ell)}$. In his case, we have the functor $V \mapsto P(V) / Q(V)$.

Polynomial functors as polynomials

Definition: The class of polynomial functors is the minimal class of functors $\mathrm{Vec} \rightarrow \mathrm{Vec}$ containing T and all C_{U} that is closed under addition, multiplication and taking subfunctors and quotients.

Examples

- Constants: $V \mapsto U$ for $U \in \operatorname{Vec}$ fixed.
- Linear functors: $V \mapsto U \otimes V$ for $U \in \operatorname{Vec}$ fixed.
- Matrices: $V \mapsto V \otimes V$
- Tensors: $V \mapsto V \otimes \cdots \otimes V$
- Polynomials: $V \mapsto S^{d} V$

Remark: The semiring of polynomial functors is graded.

Polynomial functors as topological spaces

Definition: Let P, Q be polynomial functors. A morphism $\alpha: Q \rightarrow P$ is a family $\left(\alpha_{V}: Q(V) \rightarrow P(V)\right)_{V \in \mathrm{Vec}}$ of polynomial maps such that

commutes for all linear maps $\ell: V \rightarrow W$.
Definition: A closed subset $X \subseteq P$ sends

$$
V \mapsto \text { closed subset } X(V) \subseteq P(V)
$$

such that $P(\ell)(X(V)) \subseteq X(W)$ for all linear maps $\ell: V \rightarrow W$.

The dichotomy

Let P, Q be polynomial functors. Write $Q<P$ when $Q_{(d)}$ is a quotient of $P_{(d)}$ where d is maximal with $Q_{(d)} \nsupseteq P_{(d)}$.

Theorem (B-Draisma-Eggermont-Snowden)

Let $X \subseteq P$ be a closed subset. Then $X=P$ or there are polynomial functors $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$.

Examples

- $\{$ matrices of rank $\leqslant k\}=\left\{v_{1} w_{1}^{T}+\cdots+v_{k} w_{k}^{T} \mid v_{i}, w_{i}\right.$ vectors $\}$
- \{degree- d polynomials that are zero on a codim- k subspace $\}=$ $\left\{\ell_{1} g_{1}+\cdots+\ell_{k} g_{k} \mid \operatorname{deg}\left(\ell_{i}\right)=1, \operatorname{deg}\left(g_{i}\right)=d-1\right\}$

Applications

The dichotomy can be used to prove all the previous theorems.
Theorem (Draisma)
Every descending chain $P \supsetneq X_{1} \supseteq X_{2} \supseteq \ldots$ of closed subsets stabilizes.
Proof. Using induction on P : take $Q_{1}, \ldots, Q_{k}<P$ and $\alpha_{i}: Q_{i} \rightarrow P$ such that $X_{1} \subseteq \bigcup_{i} \operatorname{im}\left(\alpha_{i}\right)$ and pull back the chain of closed subsets along each α_{i}. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let $X \subseteq Q$ be a constructible subset and let $\alpha: Q \rightarrow P$ be a morphism.
Then $\alpha(X)$ is constructible.
More analogues of results from finite-dimensional algebraic geometry?
Thank you for your attention!

References

(1) Ananyan, Hochster, Small subalgebras of polynomial rings and Stillman's conjecture, J. Am. Math. Soc. (2019).

- Bik, Draisma, Eggermont, Polynomials and tensors of bounded strength, Commun. Contemp. Math. 21 (2019), no. 7, 1850062.
(Derksen, Eggermont, Snowden, Topological noetherianity for cubic polynomials, Algebra Number Theory 11(9), 2197-2212, 2017.
E Draisma, Topological Noetherianity of polynomial functors, J. Am. Math. Soc. 32(3), 691-707, 2019.
R Draisma, Eggermont, Plücker varieties and higher secants of Sato's Grassmannian, J. Reine Angew. Math. 737, 189-215, 2018.
E Kazhdan, Ziegler, Properties of high rank subvarieties of affine spaces, preprint.

