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The rank of infinite-by-infinite matrices

Definition: The rank of an NˆN matrix A is

rkpAq :“ suptrkpBq | finite submatrices B of Au P Zě0Yt8u

Examples:
(1) The rank of the matrix
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is 8.
(2) For linearly independent subsets tv1, . . . , vku, tw1, . . . , wku Ď CN

the matrix v1wT1 ` ¨ ¨ ¨ ` vkw
T
k has rank k.



The rank of infinite-by-infinite matrices

Lemma:
A P CNˆN has rank ď k ă 8 ô A “

řk
i“1 viw

T
i with vi, wi P CN

Proof. Assume A has rank k. Then A has a invertible k ˆ k submatrix.
Permute the columns of A so that the first k columns of A are linearly
independent. Call these first k columns v1, . . . , vk. To show that

A “
k
ÿ

i“1

viw
T
i

for some w1, . . . , wk P CN, we need to show that every column of A is a
linear combination of v1, . . . , vk. Let v be another column of A. Then
every finite submatrix of pv v1 . . . vkq has rank ď k. Consider the vector
space Vn “ tλ P Ck`1 | prnpλ0v ´ λ1v1 ` ¨ ¨ ¨ ` λkvkq “ 0u ‰ 0. We
have Vn`1 Ď Vn for all n. It follows that V “

Ş

n Vn ‰ 0. Any nonzero
element of V expresses v as a linear combination of v1, . . . , vk.



The rank of infinite-by-infinite matrices

Fact: An nˆm matrix A has rank minpn,mq ô GLn ¨A ¨GLm “ Cnˆm

Theorem: An NˆN matrix A has rank 8ô GL8 ¨A ¨GL8 “ CNˆN

Proof. (ð) If the matrix A has rank k ă 8, then GL8 ¨A ¨GL8 is
contained in tmatrices in CNˆN of rank ď ku Ĺ CNˆN.

(ñ) Suppose GL8 ¨A ¨GL8 Ĺ CNˆN. Then there is a nonzero equation
on CNˆN that is zero on GL8 ¨A ¨GL8. This equation uses only finitely
many entries. So the rank of a particular finite submatrix has to be
non-maximal for every element in GL8 ¨A ¨GL8. In particular, this is
true for a permutations of A. So the rank of A must be finite.

Corollary: Let A be an NˆN matrix. Then either GL8 ¨A ¨GL8 is
dense in CNˆN or A “

řk
i“1 viw

T
i with v1, . . . , vk, w1, . . . , wk P CN.



Similar theorems

Definition: The rank of a tuple of NˆN matrices pA1, . . . , Akq is

rkpA1, . . . , Akq :“ inftrkpλ1A1 ` ¨ ¨ ¨ ` λkAkq | pλ1 : ¨ ¨ ¨ : λkq P Pk´1u

Theorem (Draisma-Eggermont)
rkpA1, . . . , Akq “ 8 ô GL8 ¨pA1, . . . , Akq ¨GL8 “ pCNˆNqk

Definition: The q-rank of a series

f “ a111x
3
1 ` a112x

2
1x2 ` ¨ ¨ ¨ ` aijkxixjxk ` . . .

is the minimal k ď 8 such that f “ `1q1 ` ¨ ¨ ¨ ` `kqk with degp`iq “ 1.

Theorem (Derksen-Eggermont-Snowden)
qrkpfq “ 8 ô GL8 ¨f “ tall polynomial series of degree 3u



Similar theorems

Take d ě 2.

Definition (Ananyan-Hochster)
The strength of a polynomial f P Crx0, . . . , xnspdq is the minimal k such
that

f “ g1h1 ` ¨ ¨ ¨ ` gkhk

with g1, . . . , gk, h1, . . . , hk P Crx0, . . . , xns homogeneous of degree ă d.

Theorem (B-Draisma-Eggermont)
For every n, let Xn Ď Crx1, . . . , xnspdq be a closed subset such that:

p˚q We have f ˝ ` P Xm for all f P Xn and all linear maps ` : Cm Ñ Cn.

Then either Xn “ Crx1, . . . , xnspdq for all n ě 0 or there is a k ă 8 such
that strpfq ď k for all f P Xn and n ě 0.



The semiring of functors P : Vec Ñ Vec

Definition: A functor P : VecÑ Vec sends

V ÞÑ P pV q

p` : V ÑW q ÞÑ pP p`q : P pV q Ñ P pW qq

such that P pidV q “ idP pV q and P pϕ ˝ ψq “ P pϕq ˝ P pψq.
Examples: Take U P Vec fixed.
‚ CU : V ÞÑ U, ` ÞÑ idU
‚ T : V ÞÑ V, ` ÞÑ `

You can add and multiply two functors P,Q : VecÑ Vec.

pP ‘QqpV q “ P pV q ‘QpV q, pP bQqpV q “ P pV q bQpV q

Definition: The functor Q is a subfunctor of P when QpV q Ď P pV q and
Qp`q “ P p`q|Qp`q. In his case, we have the functor V ÞÑ P pV q{QpV q.



Polynomial functors as polynomials

Definition: The class of polynomial functors is the minimal class of
functors VecÑ Vec containing T and all CU that is closed under
addition, multiplication and taking subfunctors and quotients.

Examples

‚ Constants: V ÞÑ U for U P Vec fixed.

‚ Linear functors: V ÞÑ U b V for U P Vec fixed.

‚ Matrices: V ÞÑ V b V

‚ Tensors: V ÞÑ V b ¨ ¨ ¨ b V

‚ Polynomials: V ÞÑ SdV

Remark: The semiring of polynomial functors is graded.



Polynomial functors as topological spaces

Definition: Let P,Q be polynomial functors. A morphism α : QÑ P is a
family pαV : QpV q Ñ P pV qqV PVec of polynomial maps such that

QpV q

Qp`q

��

αV // P pV q

P p`q

��

QpW q
αW // P pW q

commutes for all linear maps ` : V ÑW .

Definition: A closed subset X Ď P sends

V ÞÑ closed subset XpV q Ď P pV q

such that P p`qpXpV qq Ď XpW q for all linear maps ` : V ÑW .



The dichotomy

Let P,Q be polynomial functors. Write Q ă P when Qpdq is a quotient of
Ppdq where d is maximal with Qpdq fl Ppdq.

Theorem (B-Draisma-Eggermont-Snowden)
Let X Ď P be a closed subset. Then X “ P or there are polynomial
functors Q1, . . . , Qk ă P and αi : Qi Ñ P such that X Ď

Ť

i impαiq.

Examples

‚ tmatrices of rank ď ku “ tv1w
T
1 ` ¨ ¨ ¨ ` vkw

T
k | vi, wi vectorsu

‚ tdegree-d polynomials that are zero on a codim-k subspaceu “
t`1g1 ` ¨ ¨ ¨ ` `kgk | degp`iq “ 1, degpgiq “ d´ 1u



Applications

The dichotomy can be used to prove all the previous theorems.

Theorem (Draisma)
Every descending chain P Ľ X1 Ě X2 Ě ... of closed subsets stabilizes.

Proof. Using induction on P : take Q1, . . . , Qk ă P and αi : Qi Ñ P
such that X1 Ď

Ť

i impαiq and pull back the chain of closed subsets
along each αi. The resulting chains all have to stabilize.

Theorem (B-Draisma-Eggermont-Snowden)
Let X Ď Q be a constructible subset and let α : QÑ P be a morphism.
Then αpXq is constructible.

More analogues of results from finite-dimensional algebraic geometry?

Thank you for your attention!
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