Euclidean distance degrees of orthogonally invariant varieties

Arthur Bik
University of Bern

30 November 2017,
DIAMANT Symposium joint work with Jan Draisma

Euclidean distance degree of a variety

Let X be a closed subvariety of \mathbb{R}^{n} and let $v \in \mathbb{R}^{n}$ be a point.
Problem: Find the point on X closest to v.

Euclidean distance degree of a variety

Let X be a closed subvariety of \mathbb{R}^{n} and let $v \in \mathbb{R}^{n}$ be a point.
Problem: Find the point on X closest to v.
\leadsto look at critical points of $x \mapsto\|x-v\|^{2}$

Euclidean distance degree of a variety

Let X be a closed subvariety of \mathbb{R}^{n} and let $v \in \mathbb{R}^{n}$ be a point.
Problem: Find the point on X closest to v.
m look at critical points of $x \mapsto\|x-v\|^{2}$
Problem': Find the critical points on X.

Euclidean distance degree of a variety

Let X be a closed subvariety of \mathbb{R}^{n} and let $v \in \mathbb{R}^{n}$ be a point.
Problem: Find the point on X closest to v.
\leadsto look at critical points of $x \mapsto\|x-v\|^{2}$
Problem': Find the critical points on X.
Problem": Count the critical points on X.

Euclidean distance degree of a variety

Let X be a closed subvariety of \mathbb{R}^{n} and let $v \in \mathbb{R}^{n}$ be a point.
Problem: Find the point on X closest to v.
\leadsto look at critical points of $x \mapsto\|x-v\|^{2}$
Problem': Find the critical points on X.
Problem": Count the critical points on X.
Complexify $+v$ sufficiently general $\leadsto \leadsto$ The answer is the ED degree.

Euclidean distance degree of a variety

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Euclidean distance degree of a variety

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a $d \in \mathbb{Z}_{\geqslant 0}$ such that

$$
\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}
$$

has size d for sufficiently general $v \in V$.
We call this d the ED degree of X in V.

Euclidean distance degree of a variety

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a $d \in \mathbb{Z}_{\geqslant 0}$ such that

$$
\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}
$$

has size d for sufficiently general $v \in V$.
We call this d the ED degree of X in V.
Remark: $T_{x} X \cap\left(T_{x} X\right)^{\perp}=\{0\}$ for some $x \in X \Rightarrow d>0$

Euclidean distance degree of a variety

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a $d \in \mathbb{Z}_{\geqslant 0}$ such that

$$
\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}
$$

has size d for sufficiently general $v \in V$.
We call this d the ED degree of X in V.
Remark: $T_{x} X \cap\left(T_{x} X\right)^{\perp}=\{0\}$ for some $x \in X \Rightarrow d>0$
Remark: We may replace $X^{\text {reg }}$ by any dense open subset U of X.

Example: points and lines

\boldsymbol{u}^{b}

Example: points and lines

\boldsymbol{u}^{b}

\boldsymbol{u}^{b}

Example: points and lines

Example: points and lines

The ED degree equals the number of components. (ignoring lines of the form $x \pm i y=a$)

Euclidean distance degree of a variety

Proposition

The ED degree of X is the sum of the ED degrees of its components.

Euclidean distance degree of a variety

Proposition

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X=X_{1} \cup \cdots \cup X_{n}$.

Euclidean distance degree of a variety

Proposition

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X=X_{1} \cup \cdots \cup X_{n}$. Ignore points in $X_{i} \cap X_{j}$ for $i \neq j$.

Euclidean distance degree of a variety

Proposition

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X=X_{1} \cup \cdots \cup X_{n}$. Ignore points in $X_{i} \cap X_{j}$ for $i \neq j$.
For points $x \in X$ on just one X_{i}, we have $T_{x} X=T_{x} X_{i}$.

Euclidean distance degree of a variety

Proposition

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X=X_{1} \cup \cdots \cup X_{n}$. Ignore points in $X_{i} \cap X_{j}$ for $i \neq j$.
For points $x \in X$ on just one X_{i}, we have $T_{x} X=T_{x} X_{i}$.
So
$\{$ critical points on $X\}=\bigcup_{i=1}^{n}\left\{\right.$ critical points on $\left.X_{i}\right\}$
In particular, the sizes are equal.

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

\boldsymbol{u}^{b}

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

Example: unit circle

$$
x^{2}+y^{2}=1
$$

The ED degree is 2 .

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.
Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points. Let X_{0} be the subset of X of diagonal matrices.

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points. Let X_{0} be the subset of X of diagonal matrices.
Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)
The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Orthogonally invariant matrix varieties

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X=\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leqslant k\right\}$ with $k \leqslant n \leqslant m$.

Orthogonally invariant matrix varieties

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X=\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leqslant k\right\}$ with $k \leqslant n \leqslant m$.
$\leadsto X_{0}=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mid \#\left\{i \mid x_{i} \neq 0\right\} \leqslant k\right\}$

Orthogonally invariant matrix varieties

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X=\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leqslant k\right\}$ with $k \leqslant n \leqslant m$.
$\leadsto X_{0}=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mid \#\left\{i \mid x_{i} \neq 0\right\} \leqslant k\right\}$
Take $v=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$ sufficiently general.

Orthogonally invariant matrix varieties

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X=\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leqslant k\right\}$ with $k \leqslant n \leqslant m$.
$\leadsto X_{0}=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mid \#\left\{i \mid x_{i} \neq 0\right\} \leqslant k\right\}$
Take $v=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$ sufficiently general.
\leadsto may assume $v_{1}, \ldots, v_{n} \neq 0$

Orthogonally invariant matrix varieties

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X=\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leqslant k\right\}$ with $k \leqslant n \leqslant m$.
$\leadsto X_{0}=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mid \#\left\{i \mid x_{i} \neq 0\right\} \leqslant k\right\}$
Take $v=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$ sufficiently general.
\leadsto may assume $v_{1}, \ldots, v_{n} \neq 0$
We get the critical points by setting entries of v to 0 .

Orthogonally invariant matrix varieties

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_{0} in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X=\left\{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leqslant k\right\}$ with $k \leqslant n \leqslant m$.
$\leadsto X_{0}=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mid \#\left\{i \mid x_{i} \neq 0\right\} \leqslant k\right\}$
Take $v=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$ sufficiently general.
\leadsto may assume $v_{1}, \ldots, v_{n} \neq 0$
We get the critical points by setting entries of v to 0 .
$\leadsto \rightarrow$ the ED degree is $\binom{n}{k}$

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.
Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices.

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.
Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices.

Observations

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.
Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices.

Observations

(1) $\mathrm{O}(n) X_{0} \mathrm{O}(m)$ is dense in X. (Singular Value Decomposition)

Orthogonally invariant matrix varieties

The group $\mathrm{O}(n) \times \mathrm{O}(m)$ acts on the space $\mathbb{C}^{n \times m}$ of $n \times m$ matrices. The bilinear form

$$
(A, B) \mapsto \operatorname{tr}\left(A B^{T}\right)
$$

is invariant.
Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_{0} be the subset of X of diagonal matrices.

Observations

(1) $\mathrm{O}(n) X_{0} \mathrm{O}(m)$ is dense in X. (Singular Value Decomposition)
(2) For $D \in \mathbb{C}^{n \times m}$ a sufficiently general diagonal matrix, we have

$$
\mathbb{C}^{n \times m}=\{\text { diagonal matrices }\} \oplus T_{D}(\mathrm{O}(n) D \mathrm{O}(m))
$$

Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V.

Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V.
Theorem (B, Draisma, 2017)
Let $V_{0} \subseteq V$ be a subspace and set $X_{0}:=X \cap V_{0}$. Assume that $G X_{0}$ is dense in X and that

$$
V=V_{0} \oplus T_{v_{0}} G v_{0}
$$

for sufficiently general $v_{0} \in V_{0}$.
Then the ED degree of X in V equals the ED degree of X_{0} in V_{0}.

Proof for X, X_{0} irreducible

\boldsymbol{u}^{b}

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $V=V_{0}+T_{v_{0}} G v_{0}$

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $V=V_{0}+T_{v_{0}} G v_{0} \Rightarrow G \times V_{0} \rightarrow V$ is dominant.

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $V=V_{0}+T_{v_{0}} G v_{0} \Rightarrow G \times V_{0} \rightarrow V$ is dominant. $\leadsto \rightarrow$ may assume $v=g \cdot \tilde{v}_{0}$ with $\tilde{v}_{0} \in V_{0}$ s.g.

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $V=V_{0}+T_{v_{0}} G v_{0} \Rightarrow G \times V_{0} \rightarrow V$ is dominant. \leadsto may assume $v=g \cdot \tilde{v}_{0}$ with $\tilde{v}_{0} \in V_{0}$ s.g.
- $g \cdot\{$ critical points of $u\}=\{$ critical points of $g \cdot u\}$

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $V=V_{0}+T_{v_{0}} G v_{0} \Rightarrow G \times V_{0} \rightarrow V$ is dominant. \leadsto may assume $v=g \cdot \tilde{v}_{0}$ with $\tilde{v}_{0} \in V_{0}$ s.g.
- $g \cdot\{$ critical points of $u\}=\{$ critical points of $g \cdot u\}$
\leadsto may assume $v=\tilde{v}_{0}$

Proof for X, X_{0} irreducible

Let $v \in V$ and $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $V=V_{0}+T_{v_{0}} G v_{0} \Rightarrow G \times V_{0} \rightarrow V$ is dominant. \leadsto may assume $v=g \cdot \tilde{v}_{0}$ with $\tilde{v}_{0} \in V_{0}$ s.g.
- $g \cdot\{$ critical points of $u\}=\{$ critical points of $g \cdot u\}$
\leadsto may assume $v=\tilde{v}_{0}=v_{0}$

Proof for X, X_{0} irreducible

Let $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v_{0}-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

Proof for X, X_{0} irreducible

Let $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v_{0}-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $G X_{0}$ is dense in X

Proof for X, X_{0} irreducible

Let $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v_{0}-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $G X_{0}$ is dense in $X \Rightarrow T_{x} X=T_{x} X_{0}+T_{x} G x$ for $x \in X_{0}$ s.g.

Proof for X, X_{0} irreducible

Let $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v_{0}-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $G X_{0}$ is dense in $X \Rightarrow T_{x} X=T_{x} X_{0}+T_{x} G x$ for $x \in X_{0}$ s.g. $\leadsto \rightarrow$ ignore x where this does not hold

Proof for X, X_{0} irreducible

Let $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v_{0}-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $G X_{0}$ is dense in $X \Rightarrow T_{x} X=T_{x} X_{0}+T_{x} G x$ for $x \in X_{0}$ s.g. $\leadsto \rightarrow$ ignore x where this does not hold
- $v_{0}-x \perp T_{x} G x \Leftrightarrow x \in V_{0}=\left(T_{v_{0}} G v_{0}\right)^{\perp}$
\leadsto sets are equal

Proof for X, X_{0} irreducible

Let $v_{0} \in V_{0}$ be sufficiently general. We want:

$$
\#\left\{x \in X^{\text {reg }} \mid v_{0}-x \perp T_{x} X\right\}=\#\left\{x \in X_{0}^{\text {reg }} \mid v_{0}-x \perp T_{x} X_{0}\right\}
$$

- $G X_{0}$ is dense in $X \Rightarrow T_{x} X=T_{x} X_{0}+T_{x} G x$ for $x \in X_{0}$ s.g. $\leadsto \rightarrow$ ignore x where this does not hold
- $v_{0}-x \perp T_{x} G x \Leftrightarrow x \in V_{0}=\left(T_{v_{0}} G v_{0}\right)^{\perp}$ \leadsto sets are equal

Remark: First • uses that X_{0} and X are irreducible. In general, we need to know more about how the components of X_{0} and X are related.

Polar representations

Assume G is reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.

Polar representations

Assume G is reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.

Theorem (B, Draisma, 2017)

The following are equivalent:
(1) V has a subspace V_{0} such that

$$
V=V_{0} \oplus T_{v_{0}} G v_{0}
$$

for sufficiently general $v_{0} \in V_{0}$.
(2) V is a stable polar representation.
(3) $V_{\mathbb{R}}$ is a polar representation.

Polar representations

Definition (Dadok, Kac, 1985)

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$
\left\{x \in V \mid T_{x} G x \subseteq T_{v} G v\right\}
$$

has dimension $\operatorname{dim}(V / / G)$.

Polar representations

Definition (Dadok, Kac, 1985)

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$
\left\{x \in V \mid T_{x} G x \subseteq T_{v} G v\right\}
$$

has dimension $\operatorname{dim}(V / / G)$.

Definition (Dadok, 1985)

A real representation V of a compact Lie group K is polar if there is a vector $v \in V$, whose orbit is maximal-dimensional, such that for all $u \in\left(T_{v} K v\right)^{\perp}$ we have $T_{u} K u \subseteq T_{v} K v$.

Dadok's classification

Dadok found all irreducible real polar representations of compact Lie groups. Complexification of Dadok's list:

G	V
G semisimple	\mathfrak{g}
$\mathrm{O}(n)$	\mathbb{C}^{n}
$\mathrm{O}(n)$	$\mathrm{Sym}^{2}\left(\mathbb{C}^{n}\right)$
$\mathrm{O}(n) \times \mathrm{O}(m)$	$\mathbb{C}^{n \times m}$
$\mathrm{Sp}(n)$	$\Lambda^{2}\left(\mathbb{C}^{2 n}\right)$
$\mathrm{Spp}(n) \times \mathrm{Sp}(m)$	$\mathbb{C}^{2 n \times 2 m}$
$\mathrm{SL}(V)$	$V \oplus V^{*}$
$\mathrm{GL}(V)$	$\operatorname{Sym}^{2}(V) \oplus \operatorname{Sym}^{2}(V)^{*}$
$\operatorname{GL}(V)$	$\Lambda^{2}(V) \oplus \Lambda^{2}(V)^{*}$
$\mathrm{Sp}(n)$	$\mathbb{C}^{2 n} \oplus\left(\mathbb{C}^{2 n}\right)^{*}$
$\mathrm{GL}_{n} \times \mathrm{GL}_{m}$	$\mathbb{C}^{n \times m} \oplus\left(\mathbb{C}^{\times m}\right)^{*}$
SL_{2}	$\operatorname{Sym}^{4}\left(\mathbb{C}^{2}\right)$
\vdots	\vdots

Polar representations

The Weyl group

$$
W=\left\{g \in G \mid g V_{0}=V_{0}\right\} /\left\{g \in G \mid g v=v \text { for all } v \in V_{0}\right\}
$$

acts on V_{0}.

Polar representations

The Weyl group

$$
W=\left\{g \in G \mid g V_{0}=V_{0}\right\} /\left\{g \in G \mid g v=v \text { for all } v \in V_{0}\right\}
$$

acts on V_{0}.

Theorem (Dadok, Kac, 1985)

The restriction map $\mathbb{C}[V]^{G} \rightarrow \mathbb{C}\left[V_{0}\right]^{W}$ is an isomorphism.

Polar representations

The Weyl group

$$
W=\left\{g \in G \mid g V_{0}=V_{0}\right\} /\left\{g \in G \mid g v=v \text { for all } v \in V_{0}\right\}
$$

acts on V_{0}.

Theorem (Dadok, Kac, 1985)

The restriction map $\mathbb{C}[V]^{G} \rightarrow \mathbb{C}\left[V_{0}\right]^{W}$ is an isomorphism.

Corollary

We have a one-to-one correspondence:

$$
\begin{aligned}
\left\{Y \subseteq V_{0} \mid Y \text { is } W \text {-stable }\right\} & \leftrightarrow\left\{X \subseteq V \mid X=\overline{G\left(X \cap V_{0}\right)}\right\} \\
Y & \mapsto \overline{G Y} \\
X \cap V_{0} & \leftrightarrow X
\end{aligned}
$$

Thank you for your attention!

References

Bik, Draisma, A note on ED degrees of stable subvarieties in polar representations, preprint.
圊 Dadok, Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504-524.
Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125-137.
Drusvyatskiy, Lee, Ottaviani, Thomas, The Euclidean distance degree of orthogonally invariant matrix varieties, Israel J. Math. (2017).

