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Euclidean distance degree of a variety

Let X be a closed subvariety of Rn and let v P Rn be a point.

Problem: Find the point on X closest to v.

ù look at critical points of x ÞÑ ||x´ v||2

Problem’: Find the critical points on X.

Problem”: Count the critical points on X.

Complexify + v sufficiently general ù The answer is the ED degree.
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Euclidean distance degree of a variety

Let X be a closed subvariety of a finite-dimensional complex vector
space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a d P Zě0 such that
!

x P Xreg
ˇ

ˇ

ˇ
v ´ x K TxX

)

has size d for sufficiently general v P V .

We call this d the ED degree of X in V .

Remark: TxX X pTxXq
K “ t0u for some x P X ñ d ą 0

Remark: We may replace Xreg by any dense open subset U of X.
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Example: points and lines

The ED degree equals the number of components.
(ignoring lines of the form x˘ iy “ a).
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Euclidean distance degree of a variety

Proposition
The ED degree of X is the sum of the ED degrees of its components.

Proof.
Write X “ X1 Y ¨ ¨ ¨ YXn. Ignore points in Xi XXj for i ‰ j.

For points x P X on just one Xi, we have TxX “ TxXi.

So

tcritical points on Xu “
n
ď

¨

i“1

tcritical points on Xiu

In particular, the sizes are equal.
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Example: unit circle

x2 ` y2 “ 1

ù
O2

‘ The ED degree is 2.
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Orthogonally invariant matrix varieties

The group Opnq ˆOpmq acts on the space Cnˆm of nˆm matrices.
The bilinear form

pA,Bq ÞÑ tr
`

ABT
˘

is invariant.

Let X be the closure in Cnˆm of a stable real subvariety of Rnˆm with
smooth points. Let X0 be the subset of X of diagonal matrices.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)
The ED degree of X in Cnˆm equals the ED degree of X0 in the
subspace of Cnˆm of all diagonal matrices.
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Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)
The ED degree of X in Cnˆm equals the ED degree of X0 in the
subspace of Cnˆm of all diagonal matrices.

Example
Take X “ tA P Cnˆm | rkpAq ď ku with k ď n ď m.

ù X0 “ tdiagpx1, . . . , xnq | #ti | xi ‰ 0u ď ku

Take v “ diagpv1, . . . , vnq sufficiently general.
ù may assume v1, . . . , vn ‰ 0

We get the critical points by setting entries of v to 0.
ù the ED degree is

`

n
k

˘
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smooth points and let X0 be the subset of X of diagonal matrices.

Observations

(1) OpnqX0Opmq is dense in X. (Singular Value Decomposition)

(2) For D P Cnˆm a sufficiently general diagonal matrix, we have

Cnˆm “ tdiagonal matricesu k TD pOpnqDOpmqq
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Orthogonally invariant varieties

Let V be an orthogonal representation of an algebraic group G. Let X
be a G-stable closed subvariety of V .

Theorem (B, Draisma, 2017)
Let V0 Ď V be a subspace and set X0 :“ X X V0. Assume that GX0 is
dense in X and that

V “ V0 k Tv0Gv0

for sufficiently general v0 P V0.
Then the ED degree of X in V equals the ED degree of X0 in V0.
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Proof for X,X0 irreducible

Let v P V and v0 P V0 be sufficiently general. We want:

#
!

x P Xreg
ˇ

ˇ

ˇ
v ´ x K TxX

)

“ #
!

x P X
reg
0

ˇ

ˇ

ˇ
v0 ´ x K TxX0

)

‚ V “ V0 ` Tv0Gv0 ñ Gˆ V0 Ñ V is dominant.
ù may assume v “ g ¨ ṽ0 with ṽ0 P V0 s.g.

‚ g ¨ tcritical points of uu “ tcritical points of g ¨ uu
ù may assume v “ ṽ0 “ v0
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‚ g ¨ tcritical points of uu “ tcritical points of g ¨ uu
ù may assume v “ ṽ0 “ v0
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ù sets are equal

Remark: First ‚ uses that X0 and X are irreducible. In general, we need
to know more about how the components of X0 and X are related.
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Polar representations

Assume G is reductive. Let K be a maximal compact subgroup of G and
let VR a real representation of K whose complexification is V .

Theorem (B, Draisma, 2017)
The following are equivalent:

(1) V has a subspace V0 such that

V “ V0 k Tv0Gv0

for sufficiently general v0 P V0.

(2) V is a stable polar representation.

(3) VR is a polar representation.
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Polar representations

Definition (Dadok, Kac, 1985)
A complex representation V of an reductive algebraic group G is stable
polar if there is a vector v P V , whose orbit is maximal-dimensional and
closed, such that the subspace

tx P V | TxGx Ď TvGvu

has dimension dimpV {{Gq.

Definition (Dadok, 1985)
A real representation V of a compact Lie group K is polar if there is a
vector v P V , whose orbit is maximal-dimensional, such that for all
u P pTvKvqK we have TuKu Ď TvKv.
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closed, such that the subspace

tx P V | TxGx Ď TvGvu

has dimension dimpV {{Gq.

Definition (Dadok, 1985)
A real representation V of a compact Lie group K is polar if there is a
vector v P V , whose orbit is maximal-dimensional, such that for all
u P pTvKvqK we have TuKu Ď TvKv.



Dadok’s classification

Dadok found all irreducible real polar representations of compact Lie
groups. Complexification of Dadok’s list:

G V

G semisimple g

Opnq Cn

Opnq Sym2
pCn

q

Opnq ˆOpmq Cnˆm

Sppnq Λ2
pC2n

q

Sppnq ˆ Sppmq C2nˆ2m

SLpV q V ‘ V ˚

GLpV q Sym2
pV q ‘ Sym2

pV q˚

GLpV q Λ2
pV q ‘ Λ2

pV q˚

Sppnq C2n
‘pC2n

q
˚

GLn ˆGLm Cnˆm
‘pCnˆm

q
˚

SL2 Sym4
pC2
q

...
...



Polar representations

The Weyl group

W “ tg P G | gV0 “ V0u{tg P G | gv “ v for all v P V0u

acts on V0.

Theorem (Dadok, Kac, 1985)
The restriction map CrV sG Ñ CrV0s

W is an isomorphism.

Corollary
We have a one-to-one correspondence:

tY Ď V0 | Y is W -stableu Ø

!

X Ď V
ˇ

ˇ

ˇ
X “ GpX X V0q

)

Y ÞÑ GY

X X V0 ÞÑX
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Polar representations

The Weyl group

W “ tg P G | gV0 “ V0u{tg P G | gv “ v for all v P V0u

acts on V0.

Theorem (Dadok, Kac, 1985)
The restriction map CrV sG Ñ CrV0s

W is an isomorphism.

Corollary
We have a one-to-one correspondence:

tY Ď V0 | Y is W -stableu Ø

!

X Ď V
ˇ

ˇ

ˇ
X “ GpX X V0q

)

Y ÞÑ GY

X X V0 ÞÑX



Thank you for your attention!
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