Euclidean distance degrees of orthogonally invariant varieties

Arthur Bik University of Bern

30 November 2017, DIAMANT Symposium

joint work with Jan Draisma

h

Let *X* be a closed subvariety of \mathbb{R}^n and let $v \in \mathbb{R}^n$ be a point.

Problem: Find the point on X closest to v.

Problem: Find the point on *X* closest to *v*. \rightsquigarrow look at critical points of $x \mapsto ||x - v||^2$

Problem: Find the point on *X* closest to *v*. \rightsquigarrow look at critical points of $x \mapsto ||x - v||^2$

Problem': Find the critical points on X.

Problem: Find the point on *X* closest to *v*. \rightsquigarrow look at critical points of $x \mapsto ||x - v||^2$

Problem': Find the critical points on *X*.

Problem": Count the critical points on *X*.

Problem: Find the point on *X* closest to *v*. \rightsquigarrow look at critical points of $x \mapsto ||x - v||^2$

Problem': Find the critical points on *X*.

Problem": Count the critical points on *X*.

Complexify + v sufficiently general \rightsquigarrow The answer is the ED degree.

Euclidean distance degree of a variety

UNIVERSITÄT BERN

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Euclidean distance degree of a variety

UNIVERSITÄT BERN

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a $d \in \mathbb{Z}_{\geq 0}$ such that

$$\left\{ x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X \right\}$$

has size d for sufficiently general $v \in V$.

We call this d the ED degree of X in V.

Euclidean distance degree of a variety

UNIVERSITÄT BERN

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a $d \in \mathbb{Z}_{\geq 0}$ such that

$$\left\{ x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X \right\}$$

has size d for sufficiently general $v \in V$.

We call this d the ED degree of X in V.

Remark: $T_x X \cap (T_x X)^{\perp} = \{0\}$ for some $x \in X \Rightarrow d > 0$

0 UNIVERSITÄT BERN

Let X be a closed subvariety of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form.

Then there exists a $d \in \mathbb{Z}_{\geq 0}$ such that

$$\left\{ x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X \right\}$$

has size d for sufficiently general $v \in V$.

We call this d the ED degree of X in V.

Remark: $T_x X \cap (T_x X)^{\perp} = \{0\}$ for some $x \in X \Rightarrow d > 0$

Remark: We may replace X^{reg} by any dense open subset U of X.

UNIVERSITÄT BERN

The ED degree equals the number of components. (ignoring lines of the form $x \pm iy = a$)

The ED degree of X is the sum of the ED degrees of its components.

h

Proposition

The ED degree of X is the sum of the ED degrees of its components.

Proof. Write $X = X_1 \cup \cdots \cup X_n$.

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X = X_1 \cup \cdots \cup X_n$. Ignore points in $X_i \cap X_j$ for $i \neq j$.

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X = X_1 \cup \cdots \cup X_n$. Ignore points in $X_i \cap X_j$ for $i \neq j$.

For points $x \in X$ on just one X_i , we have $T_x X = T_x X_i$.

The ED degree of X is the sum of the ED degrees of its components.

Proof.

Write $X = X_1 \cup \cdots \cup X_n$. Ignore points in $X_i \cap X_j$ for $i \neq j$.

For points $x \in X$ on just one X_i , we have $T_x X = T_x X_i$.

So

{critical points on
$$X$$
} = $\bigcup_{i=1}^{n}$ {critical points on X_i }

In particular, the sizes are equal.

 $u^{\scriptscriptstyle b}$

$$x^2 + y^2 = 1$$

2

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

$$x^2 + y^2 = 1$$

2

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

$$x + y = 1$$

 $m^2 + m^2 = 1$

 $u^{\scriptscriptstyle b}$

 $u^{\scriptscriptstyle b}$

$$x^2 + y^2 = 1$$

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

The ED degree is 2.

UNIVERSITÄT BERN

h

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

 $(A,B) \mapsto \operatorname{tr}(AB^T)$

is invariant.

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{tr} (AB^T)$$

is invariant.

Let *X* be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points. Let X_0 be the subset of *X* of diagonal matrices.

UNIVERSITÄT BERN

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{tr} \left(A B^T \right)$$

is invariant.

Let *X* be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points. Let X_0 be the subset of *X* of diagonal matrices.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016) The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X = \{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\}$ with $k \leq n \leq m$.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X = \{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\}$ with $k \leq n \leq m$. $\longrightarrow X_0 = \{\operatorname{diag}(x_1, \ldots, x_n) \mid \#\{i \mid x_i \neq 0\} \leq k\}$

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X = \{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\}$ with $k \leq n \leq m$. $\longrightarrow X_0 = \{\operatorname{diag}(x_1, \ldots, x_n) \mid \#\{i \mid x_i \neq 0\} \leq k\}$

Take $v = diag(v_1, \ldots, v_n)$ sufficiently general.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X = \{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\}$ with $k \leq n \leq m$. $\longrightarrow X_0 = \{\operatorname{diag}(x_1, \ldots, x_n) \mid \#\{i \mid x_i \neq 0\} \leq k\}$

Take $v = \text{diag}(v_1, \ldots, v_n)$ sufficiently general. \longrightarrow may assume $v_1, \ldots, v_n \neq 0$

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X = \{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\}$ with $k \leq n \leq m$. $\longrightarrow X_0 = \{\operatorname{diag}(x_1, \ldots, x_n) \mid \#\{i \mid x_i \neq 0\} \leq k\}$

Take $v = \text{diag}(v_1, \dots, v_n)$ sufficiently general. \longrightarrow may assume $v_1, \dots, v_n \neq 0$

We get the critical points by setting entries of v to 0.

Theorem (Drusvyatskiy, Lee, Ottaviani, Thomas, 2016)

The ED degree of X in $\mathbb{C}^{n \times m}$ equals the ED degree of X_0 in the subspace of $\mathbb{C}^{n \times m}$ of all diagonal matrices.

Example

Take $X = \{A \in \mathbb{C}^{n \times m} \mid \operatorname{rk}(A) \leq k\}$ with $k \leq n \leq m$. $\longrightarrow X_0 = \{\operatorname{diag}(x_1, \ldots, x_n) \mid \#\{i \mid x_i \neq 0\} \leq k\}$

Take $v = \text{diag}(v_1, \dots, v_n)$ sufficiently general. \longrightarrow may assume $v_1, \dots, v_n \neq 0$

We get the critical points by setting entries of v to 0. \cdots the ED degree is $\binom{n}{k}$

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{tr}(AB^T)$$

is invariant.

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices.

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{tr} \left(AB^T \right)$$

is invariant.

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices.

Observations

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{tr} \left(AB^T \right)$$

is invariant.

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices.

Observations

(1) $O(n)X_0O(m)$ is dense in X. (Singular Value Decomposition)

The group ${\rm O}(n)\times {\rm O}(m)$ acts on the space $\mathbb{C}^{n\times m}$ of $n\times m$ matrices. The bilinear form

$$(A,B) \mapsto \operatorname{tr} \left(AB^T \right)$$

is invariant.

Let X be the closure in $\mathbb{C}^{n \times m}$ of a stable real subvariety of $\mathbb{R}^{n \times m}$ with smooth points and let X_0 be the subset of X of diagonal matrices.

Observations

(1) $O(n)X_0O(m)$ is dense in X. (Singular Value Decomposition)

(2) For $D \in \mathbb{C}^{n \times m}$ a sufficiently general diagonal matrix, we have

 $\mathbb{C}^{n \times m} = \{ \text{diagonal matrices} \} \oplus T_D \left(\mathcal{O}(n) D \mathcal{O}(m) \right)$

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V.

Let V be an orthogonal representation of an algebraic group G. Let X be a G-stable closed subvariety of V.

Theorem (B, Draisma, 2017)

Let $V_0 \subseteq V$ be a subspace and set $X_0 := X \cap V_0$. Assume that GX_0 is dense in X and that

$$V = V_0 \oplus T_{v_0} G v_0$$

for sufficiently general $v_0 \in V_0$.

Then the ED degree of X in V equals the ED degree of X_0 in V_0 .

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• $V = V_0 + T_{v_0} G v_0$

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• $V = V_0 + T_{v_0} G v_0 \Rightarrow G \times V_0 \rightarrow V$ is dominant.

UNIVERSITÄT BERN

Let $v \in V$ and $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• $V = V_0 + T_{v_0}Gv_0 \Rightarrow G \times V_0 \rightarrow V$ is dominant. \longrightarrow may assume $v = g \cdot \tilde{v}_0$ with $\tilde{v}_0 \in V_0$ s.g.

UNIVERSITÄT BERN

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

- $V = V_0 + T_{v_0}Gv_0 \Rightarrow G \times V_0 \rightarrow V$ is dominant. \longrightarrow may assume $v = g \cdot \tilde{v}_0$ with $\tilde{v}_0 \in V_0$ s.g.
- $g \cdot \{\text{critical points of } u\} = \{\text{critical points of } g \cdot u\}$

UNIVERSITÄT BERN

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

- $V = V_0 + T_{v_0}Gv_0 \Rightarrow G \times V_0 \rightarrow V$ is dominant. \longrightarrow may assume $v = g \cdot \tilde{v}_0$ with $\tilde{v}_0 \in V_0$ s.g.
- g · {critical points of u} = {critical points of g · u}
 ∞→ may assume v = v
 ₀

UNIVERSITÄT BERN

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

- $V = V_0 + T_{v_0}Gv_0 \Rightarrow G \times V_0 \rightarrow V$ is dominant. \longrightarrow may assume $v = g \cdot \tilde{v}_0$ with $\tilde{v}_0 \in V_0$ s.g.
- g · {critical points of u} = {critical points of g · u}
 ∞→ may assume v = v
 ₀ = v
 ₀

UNIVERSITÄT BERN

Let $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v_0 - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

UNIVERSITÄT BERN

Let $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v_0 - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• GX_0 is dense in X

h

Let $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v_0 - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• GX_0 is dense in $X \Rightarrow T_x X = T_x X_0 + T_x Gx$ for $x \in X_0$ s.g.

Let $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v_0 - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• GX_0 is dense in $X \Rightarrow T_xX = T_xX_0 + T_xGx$ for $x \in X_0$ s.g. \rightsquigarrow ignore x where this does not hold

Let $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v_0 - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

- GX_0 is dense in $X \Rightarrow T_x X = T_x X_0 + T_x Gx$ for $x \in X_0$ s.g. \longrightarrow ignore x where this does not hold
- $v_0 x \perp T_x Gx \Leftrightarrow x \in V_0 = (T_{v_0} Gv_0)^{\perp}$ \cdots sets are equal

Let $v_0 \in V_0$ be sufficiently general. We want:

$$\#\left\{x \in X^{\mathsf{reg}} \middle| v_0 - x \perp T_x X\right\} = \#\left\{x \in X_0^{\mathsf{reg}} \middle| v_0 - x \perp T_x X_0\right\}$$

• GX_0 is dense in $X \Rightarrow T_x X = T_x X_0 + T_x Gx$ for $x \in X_0$ s.g. \longrightarrow ignore x where this does not hold

•
$$v_0 - x \perp T_x Gx \Leftrightarrow x \in V_0 = (T_{v_0} Gv_0)^{\perp}$$

 \cdots sets are equal

Remark: First • uses that X_0 and X are irreducible. In general, we need to know more about how the components of X_0 and X are related.

Assume G is reductive. Let K be a maximal compact subgroup of G and let $V_{\mathbb{R}}$ a real representation of K whose complexification is V.

Assume *G* is reductive. Let *K* be a maximal compact subgroup of *G* and let $V_{\mathbb{R}}$ a real representation of *K* whose complexification is *V*.

Theorem (B, Draisma, 2017)

The following are equivalent:

(1) V has a subspace V_0 such that

 $V = V_0 \oplus T_{v_0} G v_0$

for sufficiently general $v_0 \in V_0$.

- (2) V is a stable polar representation.
- (3) $V_{\mathbb{R}}$ is a polar representation.

D UNIVERSITÄT BERN

Definition (Dadok, Kac, 1985)

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$\{x \in V \mid T_x G x \subseteq T_v G v\}$$

has dimension $\dim(V//G)$.

D UNIVERSITÄT BERN

Definition (Dadok, Kac, 1985)

A complex representation V of an reductive algebraic group G is stable polar if there is a vector $v \in V$, whose orbit is maximal-dimensional and closed, such that the subspace

$$\{x \in V \mid T_x G x \subseteq T_v G v\}$$

has dimension $\dim(V//G)$.

Definition (Dadok, 1985)

A real representation V of a compact Lie group K is polar if there is a vector $v \in V$, whose orbit is maximal-dimensional, such that for all $u \in (T_v K v)^{\perp}$ we have $T_u K u \subseteq T_v K v$.

Dadok's classification

UNIVERSITÄT BERN

Dadok found all irreducible real polar representations of compact Lie groups. Complexification of Dadok's list:

G	V
G semisimple	g
O(n)	\mathbb{C}^n
O(n)	$\operatorname{Sym}^2(\mathbb{C}^n)$
$O(n) \times O(m)$	$\mathbb{C}^{n imes m}$
$\operatorname{Sp}(n)$	$\Lambda^2(\mathbb{C}^{2n})$
$\operatorname{Sp}(n) \times \operatorname{Sp}(m)$	$\mathbb{C}^{2n imes 2m}$
SL(V)	$V \oplus V^*$
$\operatorname{GL}(V)$	$\operatorname{Sym}^2(V) \oplus \operatorname{Sym}^2(V)^*$
$\operatorname{GL}(V)$	$\Lambda^2(V) \oplus \Lambda^2(V)^*$
$\operatorname{Sp}(n)$	$\mathbb{C}^{2n} \oplus (\mathbb{C}^{2n})^*$
$\operatorname{GL}_n \times \operatorname{GL}_m$	$\mathbb{C}^{n imes m} \oplus (\mathbb{C}^{n imes m})^*$
SL_2	$\operatorname{Sym}^4(\mathbb{C}^2)$
:	

UNIVERSITÄT BERN

The Weyl group

$$W = \{g \in G \mid gV_0 = V_0\} / \{g \in G \mid gv = v \text{ for all } v \in V_0\}$$

acts on V_0 .

The Weyl group

$$W = \{g \in G \mid gV_0 = V_0\} / \{g \in G \mid gv = v \text{ for all } v \in V_0\}$$

acts on V_0 .

Theorem (Dadok, Kac, 1985)

The restriction map $\mathbb{C}[V]^G \to \mathbb{C}[V_0]^W$ is an isomorphism.

The Weyl group

$$W = \{g \in G \mid gV_0 = V_0\} / \{g \in G \mid gv = v \text{ for all } v \in V_0\}$$

acts on V_0 .

Theorem (Dadok, Kac, 1985)

The restriction map $\mathbb{C}[V]^G \to \mathbb{C}[V_0]^W$ is an isomorphism.

Corollary

We have a one-to-one correspondence:

$$\{Y \subseteq V_0 \mid Y \text{ is } W \text{-stable} \} \quad \leftrightarrow \quad \left\{ X \subseteq V \mid X = \overline{G(X \cap V_0)} \right\}$$

$$Y \quad \mapsto \quad \overline{GY}$$

$$X \cap V_0 \quad \leftarrow \quad X$$

UNIVERSITÄT BERN

Thank you for your attention!

References

- Bik, Draisma, A note on ED degrees of stable subvarieties in polar representations, preprint.
- Dadok, Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504-524.
- Dadok, *Polar coordinates induced by actions of compact Lie groups*, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125-137.
- Drusvyatskiy, Lee, Ottaviani, Thomas, *The Euclidean distance degree of orthogonally invariant matrix varieties*, Israel J. Math. (2017).