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The strength of polynomials

Let f be a homogeneous polynomial of degree d ≥ 2 over C.

Definition
The strength of f is the minimal number str(f) := r ≥ 0 such that

f = g1 · h1 + . . . + gr · hr

with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.
First examples
(0) str(f) = 0⇔ f = 0
(1) str(f) = 1⇔ f 6= 0 is reducible
(2) str(f) ≥ 2⇔ f is irreducible

Example
The polynomial

x2 + y2 + z2 = (x + iy) · (x− iy) + z · z
has strength 2. (It would be 3 over R.)
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Why care about strength?

Reason 1 - Data efficiency
A homogeneous polynomial of degree d in n + 1 variables has(

n + d

d

)
coefficients.

A polynomial f of degree 3 in 106 variables has
≈ 1.67 · 1017

coefficients.

The number of coefficients in a strength decomposition is
≈ str(f) · 5.00 · 1011.

So saving this uses ≈ 33400/ str(f) times less space.
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Why care about strength?

Reason 2 - Universality
Let f ∈ C[x1, . . . , xn]d be a homogeneous polynomial.

For c11, . . . , cnm ∈ C, the polynomial
f(c11y1 + . . . + c1mym, . . . , cn1y1 + . . . + cnmym) ∈ C[y1, . . . , ym]d
is a coordinate transformation of f .

Theorem (Kazhdan-Ziegler, B-Draisma-Eggermont)
Let P be a property of degree-d polynomials such that

f has P ⇔ every coordinate transformation of f has P
and not every polynomial has P. Then the exists a k ≥ 0 such that

f has P ⇒ str(f) ≤ k
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Why care about strength?

Reason 2 - Universality
Let f ∈ C[x1, . . . , xn]d be a homogeneous polynomial.

For c11, . . . , cnm ∈ C, the polynomial
f(c11y1 + . . . + c1mym, . . . , cn1y1 + . . . + cnmym) ∈ C[y1, . . . , ym]d
is a coordinate transformation of f .

Example (Kazhdan-Ziegler)
For every ` ≥ 0, there exists a k ≥ 0 such that

all partial derivatives of f have strength ≤ `⇒ str(f) ≤ k

This property satisfies the condition because of the chain rule.
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Why care about strength?

Reason 3 - It is like the rank of matrices
We have a one-to-one correspondence
{A ∈ Cn×n | A = A>} ↔ C[x1, . . . , xn]2

A 7→ (x1, . . . , xn)A(x1, . . . , xn)>

(a1, . . . , an)>(a1, . . . , an) 7→ (a1x1 + . . . + anxn)2

vw> + wv> 7→ 2 · (x1, . . . , xn)v · (x1, . . . , xn)w
Write f = (x1, . . . , xn)A(x1, . . . , xn)>. Then

str(f) ≤ k ⇔ f is a sum of k reducible polynomials
⇔ A is a sum of k matrices of rank ≤ 2
⇔ A has rank ≤ 2k

So str(f) = drk(A)/2e.
Example
str(x2 + y2 + z2) = drk(I3)/2e = 2.
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Basic properties of strength

How does strength compare to rank of matrices?
We can compute the rank of a matrix.
(determinants of submatrices / column- and rowoperations)
Q: How do you compute the strength of a polynomial?

The limit of a sequence of matrices of rank ≤ k has rank ≤ k.
Q: Is the subset of polynomials of strength ≤ k closed?

An n×m matrix has maximal rank min(n, m).
Q: What is the maximal strength of a polynomial in C[x1, . . . , xn]d?

A random n×m matrix has rank min(n, m).
Q: What is the strength of a random polynomial in C[x1, . . . , xn]d?
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Computing the strength of a polynomial

I don’t know how to do this... Exercise Find an algorithm.

Tricks
1 We have str(f + g) ≤ str(f) + str(g). Turned around, we find

str(f − g) ≥ str(f)− str(g)
If str(f) ≥ k and str(g) ≤ `, then str(f − g) ≥ k − `.

2 For f ∈ C[x1, . . . , xn]d, we define the singular locus:

Sing(f) :=
{

∂f

∂x1
= . . . = ∂f

∂xn
= 0

}
When f = g1 · h1 + . . . + gk · hk, then

{g1 = h1 = . . . = gk = hk = 0} ⊆ Sing(f)
and so codim Sing(f) := n− dim Sing(f) ≤ 2k.

3 Every polynomial in C[x, y]d is reducible. Hence
f ∈ C[x, y]d ⇒ str(f) ≤ 1
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Computing the strength of a polynomial

Example
Consider f = xd

1 + . . . + xd
n.

We have

f =
{

(xd
1 + xd

2) + . . . + (x2
2k−1 + xd

2k) if n = 2k
(xd

1 + xd
2) + . . . + (x2

2k−1 + xd
2k) + xd

2k+1 if n = 2k + 1
and so str(f) ≤ dn/2e.

The singular locus
Sing(f) = {dxd−1

1 = . . . = dxd−1
n = 0} = {(0, . . . , 0)} ⊆ Cn

has codimenion n. So str(f) ≥ dn/2e.

So str(f) = dn/2e.
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Strength ≤ 3 is not closed

Q: Is the subset of polynomials of strength ≤ k closed?

• For k = 1, this is the set of reducible polynomials.
P(C[x1, . . . , xn]i)× P(C[x1, . . . , xn]d−i) → P(C[x1, . . . , xn]d)

([g], [h]) 7→ [g · h]
has closed image.
• For k = 2, I don’t know. (Conjecture: yes)
• For d = 2, this is the set of symmetric matrices of rank ≤ 2k.
• For d = 3, this is true. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)
The set of polynomials in C[x1, . . . , xn]4 of strength ≤ 3 is not
closed for n� 0.
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Strength ≤ 3 is not closed

For t 6= 0 and f, g, p, q of degree 2 and x, y, u, v variables, the
polynomial
1/

t

(
(x2 + tg)(y2 + tf)− (u2 − tq)(v2 − tp)− (xy − uv)(xy + uv)

)
= x2f + y2g + u2p + v2q + t(fg − pq)

has strength ≤ 3. For t→ 0, we get

x2f + y2g + u2p + v2q

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p + v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.
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And now for something completely different

Consider the polynomial

x2f + y2g + u2p + v2q ∈ C[x, y, u, v, f, g, p, q]4

where x, y, u, v have degree 1 and f, g, p, q have degree 2.

Definition
For d ≥ 2, the strength of a polynomial h ∈ C[x, y, u, v, f, g, p, q]d
is the minimum number r ≥ 0 (when this exists) such that

h = g1 · h1 + . . . + gr · hr

with g1, h1, . . . , gr, hr homogeneous polynomials of degree ≤ d− 1.

Example
When the gi, hi are homogeneous polynomials of degree ≤ 1, then

g1 · h1 + . . . + gr · hr ∈ C[x, y, u, v]
Hence the variable f has infinite strength.
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And now for something completely different

Proposition
The polynomial

x2f + y2g + u2p + v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.
1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p + v2q 6= `1 · h1 + `2 · h2 + `3 · h3

for all `i ∈ C[x, y, u, v, f, g, p, q]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.
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And now for something completely different

Proposition
The polynomial

x2f + y2g + u2p + v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.
1/4 of the proof
We need to show, for example, that

x2f + y2g + u2p + v2q 6= `1 · h1 + `2 · h2 + `3 · h3

for all `i ∈ C[x, y, u, v]1 and hi ∈ C[x, y, u, v, f, g, p, q]3.

Think of R = C[x, y, u, v] as the set of coefficients.
So `i ∈ R and hi ∈ R[f, g, p, q].

The coefficients of f, g, p, q on the right are all in (`1, `2, `3).
The coefficients x2, y2, u2, v2 on the left are not all (`1, `2, `3).
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Strength ≤ 3 is not closed

Theorem (Ballico-B-Oneto-Ventura)
For n� 0, there are polynomials f, g, p, q ∈ C[z1, . . . , zn]2 such
that

x2f + y2g + u2p + v2q ∈ C[x, y, u, v, z1, . . . , zn]4

has strength 4.

Proposition
The polynomial

x2f + y2g + u2p + v2q ∈ C[x, y, u, v, f, g, p, q]4
has strength 4.

Fact. The proposition implies the theorem.

The proof uses the geometry of polynomial functors.

Strength of Polynomials Arthur Bik



Generic and maximal strength

Q: What is the maximal strength of a polynomial in C[x1, . . . , xn]d?

Q: What is the strength of a random polynomial in C[x1, . . . , xn]d?

Definition
The slice rank of f is the minimal slrk(f) := r ≥ 0 such that

f = `1 · h1 + . . . + `r · hr

with `1, . . . , `r and h1, . . . , hr homogeneous of degrees 1 and d− 1.

Proposition
1 str(f) ≤ slrk(f) ≤ n− 1
2 slrk(f) = min{codim(U) | U ⊆ Cn, f |U = 0}
3 The subset of polynomials of slice rank ≤ k closed.
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Generic and maximal strength

Theorem (Harris)
A generic homogeneous polynomial of degree d in n + 1 variables
has slice rank

min
{

r ∈ Z≥(n+1)/2

∣∣∣∣∣ r(n + 1− r) ≥
(

d + n− r

d

)}
.

Theorem (B-Oneto)
The strength and slice rank of a homogeneous polynomial of
degree d are generically equal for d ≤ 7 and d = 9.

Theorem (Ballico-B-Oneto-Ventura)
The strength and slice rank of a homogeneous polynomial of
degree d are generically equal for d ≥ 5.
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Generic and maximal strength

We consider

{g1 · h1 + . . . + gr · hr | deg(gi) = ai, deg(hi) = d− ai}

inside C[x1, . . . , xn]d. We want to know the dimension.

Terracini’s Lemma
This dimension equals the dimension of (g1, h1, . . . , gr, hr)d for
generic generators.

Proposition
This dimension is at most(

n + d

d

)
− coeffd

(∏r
i=1(1− tai)(1− td−ai)

(1− t)n+1

)
+
(

`d/2
2

)

where `d/2 := #{i | ai = d/2}. Equality when all ai equal to 1.
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Generic and maximal strength

For fixed d, r, we want F (a1, . . . , ar) :=

coeffd

(∏r
i=1(1− tai)(1− td−ai)

(1− t)n+1

)
−
(

`d/2
2

)

to be minimal when all ai equal to 1.

Consider F (a1, . . . , ar)− F (a1, . . . , ar−1, ar − 1) when ar > 1.

We find expressions
c`(k1, . . . , kn) := coeff`(Pk1 · · ·Pkn)

with Pk = 1 + t + . . . + tk for k ∈ {0, 1, 2, . . .} ∪ {∞}.

We use
• c`(k1, . . . , kn) ≤ c`+1(k1, . . . , kn) when k1 =∞
• c`(k1, . . . , kn) ≤ c`(k1 + 1, . . . , kn)
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Strength of polynomials

Q: Is there an algorithm that computes low-strength
approximations of a polynomial?

Q: What is the highest possible strength of a limit of strength ≤ k
polynomials?

Thanks for your attention!
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