Strength of Polynomials

Arthur Bik

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Mathematical Colloquium Bern

12 April 2021

MAX-PLANCK-GESELLSCHAFT

Let f be a homogeneous polynomial of degree $d \ge 2$ over \mathbb{C} . **Definition**

The strength of f is the minimal number $str(f) := r \ge 0$ such that

$$f = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$. First examples

(0)
$$\operatorname{str}(f) = 0 \Leftrightarrow f = 0$$

(1) $\operatorname{str}(f) = 1 \Leftrightarrow f \neq 0$ is reducible

(2) $\operatorname{str}(f) \ge 2 \Leftrightarrow f$ is irreducible

Example

The polynomial

$$x^{2} + y^{2} + z^{2} = (x + iy) \cdot (x - iy) + z \cdot z$$

has strength 2.

(It would be 3 over \mathbb{R} .)

Reason 1 - Data efficiency

A homogeneous polynomial of degree $d \mbox{ in } n+1$ variables has

$$\binom{n+d}{d}$$

coefficients.

A polynomial f of degree 3 in 10^6 variables has $\approx 1.67\cdot 10^{17}$

coefficients.

The number of coefficients in a strength decomposition is $\approx \mathrm{str}(f) \cdot 5.00 \cdot 10^{11}.$

So saving this uses $\approx 33400/\operatorname{str}(f)$ times less space.

Reason 2 - Universality

Let $f \in \mathbb{C}[x_1, \ldots, x_n]_d$ be a homogeneous polynomial.

For $c_{11}, \ldots, c_{nm} \in \mathbb{C}$, the polynomial $f(c_{11}y_1 + \ldots + c_{1m}y_m, \ldots, c_{n1}y_1 + \ldots + c_{nm}y_m) \in \mathbb{C}[y_1, \ldots, y_m]_d$ is a coordinate transformation of f.

Theorem (Kazhdan-Ziegler, B-Draisma-Eggermont) Let \mathcal{P} be a property of degree-d polynomials such that f has $\mathcal{P} \Leftrightarrow$ every coordinate transformation of f has \mathcal{P} and not every polynomial has \mathcal{P} . Then the exists a $k \ge 0$ such that f has $\mathcal{P} \Rightarrow \operatorname{str}(f) \le k$

Reason 2 - Universality

Let $f \in \mathbb{C}[x_1, \dots, x_n]_d$ be a homogeneous polynomial.

For $c_{11}, \ldots, c_{nm} \in \mathbb{C}$, the polynomial $f(c_{11}y_1 + \ldots + c_{1m}y_m, \ldots, c_{n1}y_1 + \ldots + c_{nm}y_m) \in \mathbb{C}[y_1, \ldots, y_m]_d$ is a coordinate transformation of f.

Example (Kazhdan-Ziegler)

For every $\ell \ge 0$, there exists a $k \ge 0$ such that all partial derivatives of f have strength $\le \ell \Rightarrow \operatorname{str}(f) \le k$ This property satisfies the condition because of the chain rule.

Reason 3 - It is like the rank of matrices

We have a one-to-one correspondence

$$\begin{split} \{A \in \mathbb{C}^{n \times n} \mid A = A^{\top}\} & \leftrightarrow \quad \mathbb{C}[x_1, \dots, x_n]_2 \\ A & \mapsto \quad (x_1, \dots, x_n)A(x_1, \dots, x_n)^{\top} \\ (a_1, \dots, a_n)^{\top}(a_1, \dots, a_n) & \mapsto \quad (a_1x_1 + \dots + a_nx_n)^2 \\ vw^{\top} + wv^{\top} & \mapsto \quad 2 \cdot (x_1, \dots, x_n)v \cdot (x_1, \dots, x_n)w \\ \\ \\ \text{Write } f = (x_1, \dots, x_n)A(x_1, \dots, x_n)^{\top}. \text{ Then} \\ & \text{str}(f) \leq k \quad \Leftrightarrow \quad f \text{ is a sum of } k \text{ reducible polynomials} \\ & \Leftrightarrow \quad A \text{ is a sum of } k \text{ matrices of rank} \leq 2 \\ & \Leftrightarrow \quad A \text{ has rank} \leq 2k \\ \\ \\ \\ \\ \text{So } \text{str}(f) = [\operatorname{rk}(A)/2]. \end{split}$$

Example

$$\operatorname{str}(x^2 + y^2 + z^2) = \lceil \operatorname{rk}(I_3)/2 \rceil = 2.$$

How does strength compare to rank of matrices?

We can compute the rank of a matrix. (determinants of submatrices / column- and rowoperations) **Q**: How do you compute the strength of a polynomial?

The limit of a sequence of matrices of rank $\leq k$ has rank $\leq k$. **Q**: Is the subset of polynomials of strength $\leq k$ closed?

An $n \times m$ matrix has maximal rank $\min(n, m)$. Q: What is the maximal strength of a polynomial in $\mathbb{C}[x_1, \ldots, x_n]_d$?

A random $n \times m$ matrix has rank $\min(n, m)$. Q: What is the strength of a random polynomial in $\mathbb{C}[x_1, \ldots, x_n]_d$?

Computing the strength of a polynomial

I don't know how to do this... **Exercise** Find an algorithm.

Tricks

1 We have $\operatorname{str}(f+q) \leq \operatorname{str}(f) + \operatorname{str}(q)$. Turned around, we find $\operatorname{str}(f-q) > \operatorname{str}(f) - \operatorname{str}(q)$ If $\operatorname{str}(f) \ge k$ and $\operatorname{str}(g) \le \ell$, then $\operatorname{str}(f-g) \ge k-\ell$. 2 For $f \in \mathbb{C}[x_1, \ldots, x_n]_d$, we define the singular locus: $\operatorname{Sing}(f) := \left\{ \frac{\partial f}{\partial r_1} = \ldots = \frac{\partial f}{\partial r_2} = 0 \right\}$ When $f = a_1 \cdot h_1 + \ldots + a_k \cdot h_k$, then $\{q_1 = h_1 = \ldots = q_k = h_k = 0\} \subset \text{Sing}(f)$ and so $\operatorname{codim}\operatorname{Sing}(f) := n - \dim\operatorname{Sing}(f) \le 2k$. **3** Every polynomial in $\mathbb{C}[x, y]_d$ is reducible. Hence $f \in \mathbb{C}[x, y]_d \Rightarrow \operatorname{str}(f) < 1$

Example

Consider $f = x_1^d + \ldots + x_n^d$.

We have

$$f = \begin{cases} (x_1^d + x_2^d) + \ldots + (x_{2k-1}^2 + x_{2k}^d) & \text{if } n = 2k\\ (x_1^d + x_2^d) + \ldots + (x_{2k-1}^2 + x_{2k}^d) + x_{2k+1}^d & \text{if } n = 2k+1 \end{cases}$$

and so $\operatorname{str}(f) \le \lceil n/2 \rceil$.

The singular locus

 $\operatorname{Sing}(f) = \{ dx_1^{d-1} = \ldots = dx_n^{d-1} = 0 \} = \{ (0, \ldots, 0) \} \subseteq \mathbb{C}^n$ has codimenion n. So $\operatorname{str}(f) \ge \lceil n/2 \rceil$.

So $\operatorname{str}(f) = \lceil n/2 \rceil$.

 \mathbf{Q} : Is the subset of polynomials of strength $\leq k$ closed?

• For k = 1, this is the set of reducible polynomials. $\mathbb{P}(\mathbb{C}[x_1, \dots, x_n]_i) \times \mathbb{P}(\mathbb{C}[x_1, \dots, x_n]_{d-i}) \rightarrow \mathbb{P}(\mathbb{C}[x_1, \dots, x_n]_d)$ $([g], [h]) \mapsto [g \cdot h]$

has closed image.

- For k = 2, I don't know. (Conjecture: yes)
- For d = 2, this is the set of symmetric matrices of rank $\leq 2k$.
- For d = 3, this is true. (slice rank of polynomials)

Theorem (Ballico-B-Oneto-Ventura)

The set of polynomials in $\mathbb{C}[x_1, \ldots, x_n]_4$ of strength ≤ 3 is not closed for $n \gg 0$.

For $t \neq 0$ and f, g, p, q of degree 2 and x, y, u, v variables, the polynomial

$$\frac{1}{t} \left((x^2 + tg)(y^2 + tf) - (u^2 - tq)(v^2 - tp) - (xy - uv)(xy + uv) \right)$$

= $x^2 f + y^2 g + u^2 p + v^2 q + t(fg - pq)$

has strength ≤ 3 . For $t \rightarrow 0$, we get

$$x^2f + y^2g + u^2p + v^2q$$

Theorem (Ballico-B-Oneto-Ventura)

For $n\gg 0,$ there are polynomials $f,g,p,q\in \mathbb{C}[z_1,\ldots,z_n]_2$ such that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, z_{1}, \dots, z_{n}]_{4}$$

has strength 4.

Consider the polynomial

$$x^2f + y^2g + u^2p + v^2q \in \mathbb{C}[x, y, u, v, f, g, p, q]_4$$

where x, y, u, v have degree 1 and f, g, p, q have degree 2.

Definition

For $d \geq 2$, the strength of a polynomial $h \in \mathbb{C}[x, y, u, v, f, g, p, q]_d$ is the minimum number $r \geq 0$ (when this exists) such that

$$h = g_1 \cdot h_1 + \ldots + g_r \cdot h_r$$

with $g_1, h_1, \ldots, g_r, h_r$ homogeneous polynomials of degree $\leq d-1$.

Example

When the g_i, h_i are homogeneous polynomials of degree ≤ 1 , then

$$g_1 \cdot h_1 + \ldots + g_r \cdot h_r \in \mathbb{C}[x, y, u, v]$$

Hence the variable f has infinite strength.

Proposition

The polynomial

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, f, g, p, q]_{4}$$

has strength 4.

1/4 of the proof

We need to show, for example, that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \neq \ell_{1} \cdot h_{1} + \ell_{2} \cdot h_{2} + \ell_{3} \cdot h_{3}$$
for all $\ell_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$

Proposition

The polynomial

 $x^2f+y^2g+u^2p+v^2q\in \mathbb{C}[x,y,u,v,f,g,p,q]_4$

has strength 4.

1/4 of the proof

We need to show, for example, that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \neq \ell_{1} \cdot h_{1} + \ell_{2} \cdot h_{2} + \ell_{3} \cdot h_{3}$$

for all $\ell_{i} \in \mathbb{C}[x, y, u, v]_{1}$ and $h_{i} \in \mathbb{C}[x, y, u, v, f, g, p, q]_{3}$.

Think of $R = \mathbb{C}[x, y, u, v]$ as the set of coefficients. So $\ell_i \in R$ and $h_i \in R[f, g, p, q]$.

The coefficients of f, g, p, q on the right are all in (ℓ_1, ℓ_2, ℓ_3) . The coefficients x^2, y^2, u^2, v^2 on the left are not all (ℓ_1, ℓ_2, ℓ_3) .

Theorem (Ballico-B-Oneto-Ventura)

For $n\gg 0,$ there are polynomials $f,g,p,q\in \mathbb{C}[z_1,\ldots,z_n]_2$ such that

$$x^{2}f + y^{2}g + u^{2}p + v^{2}q \in \mathbb{C}[x, y, u, v, z_{1}, \dots, z_{n}]_{4}$$

has strength 4.

Proposition

The polynomial

$$x^2f + y^2g + u^2p + v^2q \in \mathbb{C}[x, y, u, v, f, g, p, q]_4$$

has strength 4.

Fact. The proposition implies the theorem.

The proof uses the geometry of polynomial functors.

Generic and maximal strength

- **Q**: What is the maximal strength of a polynomial in $\mathbb{C}[x_1,\ldots,x_n]_d$?
- **Q**: What is the strength of a random polynomial in $\mathbb{C}[x_1, \ldots, x_n]_d$?

Definition

The *slice rank* of f is the minimal $slrk(f) := r \ge 0$ such that

$$f = \ell_1 \cdot h_1 + \ldots + \ell_r \cdot h_r$$

with ℓ_1, \ldots, ℓ_r and h_1, \ldots, h_r homogeneous of degrees 1 and d-1.

Proposition

$$1 \operatorname{str}(f) \le \operatorname{slrk}(f) \le n - 1$$

- 2 $\operatorname{slrk}(f) = \min\{\operatorname{codim}(U) \mid U \subseteq \mathbb{C}^n, f|_U = 0\}$
- **3** The subset of polynomials of slice rank $\leq k$ closed.

Theorem (Harris)

A generic homogeneous polynomial of degree $d \mbox{ in } n+1$ variables has slice rank

$$\min\left\{r\in\mathbb{Z}_{\geq(n+1)/2}\left|r(n+1-r)\geq\binom{d+n-r}{d}\right\}\right\}.$$

Theorem (B-Oneto)

The strength and slice rank of a homogeneous polynomial of degree d are generically equal for $d \leq 7$ and d = 9.

Theorem (Ballico-B-Oneto-Ventura)

The strength and slice rank of a homogeneous polynomial of degree d are generically equal for $d \ge 5$.

We consider

$$\{g_1 \cdot h_1 + \ldots + g_r \cdot h_r \mid \deg(g_i) = a_i, \deg(h_i) = d - a_i\}$$

inside $\mathbb{C}[x_1,\ldots,x_n]_d$. We want to know the dimension.

Terracini's Lemma

This dimension equals the dimension of $(g_1, h_1, \ldots, g_r, h_r)_d$ for generic generators.

Proposition

This dimension is at most

$$\binom{n+d}{d} - \operatorname{coeff}_d \left(\frac{\prod_{i=1}^r (1-t^{a_i})(1-t^{d-a_i})}{(1-t)^{n+1}} \right) + \binom{\ell_{d/2}}{2}$$

where $\ell_{d/2} := \#\{i \mid a_i = d/2\}$. Equality when all a_i equal to 1.

Generic and maximal strength

For fixed d, r, we want $F(a_1, \ldots, a_r) :=$

$$\operatorname{coeff}_d\left(\frac{\prod_{i=1}^r (1-t^{a_i})(1-t^{d-a_i})}{(1-t)^{n+1}}\right) - \binom{\ell_{d/2}}{2}$$

to be minimal when all a_i equal to 1.

Consider
$$F(a_1, ..., a_r) - F(a_1, ..., a_{r-1}, a_r - 1)$$
 when $a_r > 1$.

We find expressions

$$c_\ell(k_1,\ldots,k_n):=\mathrm{coeff}_\ell(P_{k_1}\cdots P_{k_n})$$
 with $P_k=1+t+\ldots+t^k$ for $k\in\{0,1,2,\ldots\}\cup\{\infty\}.$ We use

•
$$c_{\ell}(k_1, ..., k_n) \le c_{\ell+1}(k_1, ..., k_n)$$
 when $k_1 = \infty$
• $c_{\ell}(k_1, ..., k_n) \le c_{\ell}(k_1 + 1, ..., k_n)$

Q: Is there an algorithm that computes low-strength approximations of a polynomial?

 $\mathbf{Q}:$ What is the highest possible strength of a limit of strength $\leq k$ polynomials?

Thanks for your attention!

References

- Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura *The set of forms with bounded strength is not closed* preprint
- Edoardo Ballico, Arthur Bik, Alessandro Oneto, Emanuele Ventura Strength and slice rank of forms are generically equal preprint
 - Arthur Bik, Jan Draisma, Rob H. Eggermont Polynomials and tensors of bounded strength Commun. Contemp. Math. 21 (2019), no. 7, 1850062
 - David Kazhdan, Tamar Ziegler

Properties of high rank subvarieties of affine spaces Geometric and Functional Analysis 30 (2020), pp. 1063–1096