Polynomials of bounded strength

Arthur Bik
University of Bern

28 June 2018, Basel
joint work with Jan Draisma and Rob Eggermont

The strength of a polynomial

$$
\begin{gathered}
x_{1} x_{2} x_{5}+x_{2} x_{3} x_{5}+x_{3} x_{4} x_{5}+x_{1} x_{5}^{2}+x_{2} x_{5}^{2}+x_{3} x_{5}^{2}-x_{4} x_{5}^{2}+ \\
x_{1} x_{2} x_{6}+x_{2} x_{3} x_{6}+x_{3} x_{4} x_{6}-x_{1} x_{6}^{2}-x_{2} x_{6}^{2}-x_{3} x_{6}^{2}+x_{4} x_{6}^{2}+ \\
x_{1} x_{2} x_{7}+x_{2} x_{3} x_{7}+x_{3} x_{4} x_{7}-x_{1} x_{7}^{2}-x_{2} x_{7}^{2}-x_{3} x_{7}^{2}+x_{4} x_{7}^{2}+ \\
x_{1} x_{2} x_{8}+x_{2} x_{3} x_{8}+x_{3} x_{4} x_{8}+x_{1} x_{8}^{2}+x_{2} x_{8}^{2}+x_{3} x_{8}^{2}-x_{4} x_{8}^{2} \\
= \\
\left(x_{1}+x_{2}+x_{3}-x_{4}\right)\left(x_{5}^{2}-x_{6}^{2}-x_{7}^{2}+x_{8}^{2}\right)+ \\
\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}\right)\left(x_{5}+x_{6}+x_{7}+x_{8}\right)
\end{gathered}
$$

The strength of a polynomial

Definition

The strength of a homogeneous polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of degree $d \geq 2$ is the minimal $k \geq 0$ such that we can write

$$
f=s_{1} r_{1}+\cdots+s_{k} r_{k}
$$

with $s_{1}, \ldots, s_{k}, r_{1}, \ldots, r_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous polynomials of degree $<d$.

Examples

- Reducible polynomials have strength ≤ 1.
- The polynomial $y^{2} z-\left(x^{3}+x z^{2}+z^{3}\right)$ has strength 2 .
- The polynomial $x_{1}^{2}+\cdots+x_{n}^{2}$ has strength $\lceil n / 2\rceil$.
- Every polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}$ has strength $\leq n$.

The strength of a polynomial

Proposition

For every symmetric matrix $A \in \mathbb{C}^{n \times n}$, the polynomial

$$
f=\left(x_{1} \ldots x_{n}\right) A\left(x_{1} \ldots x_{n}\right)^{T}
$$

has strength $\lceil\operatorname{rk}(A) / 2\rceil$.

Remark

$f(x)=s_{1}(x) r_{1}(x)+\cdots+s_{k}(x) r_{k}(x)$ and y_{1}, \ldots, y_{n} are linear forms
$\Rightarrow f(y)=s_{1}(y) r_{1}(y)+\cdots+s_{k}(y) r_{k}(y)$ has strength $\leq k$

Proof.

Change coordinates so that $f=x_{1}^{2}+\cdots+x_{r}^{2}$ with $r=\operatorname{rk}(A)$.
(\leq) Use: $x_{1}^{2}+x_{2}^{2}=\left(x_{1}+i x_{2}\right)\left(x_{1}-i x_{2}\right)$
(\geq) Use: $2 s_{1} r_{1}=\left(x_{1} \ldots x_{n}\right)\left(v w^{T}+w v^{T}\right)\left(x_{1} \ldots x_{n}\right)^{T}$

The strength of a polynomial

Definition

The strength of a homogeneous polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of degree $d \geq 2$ is the minimal $k \geq 0$ such that we can write

$$
f=s_{1} r_{1}+\cdots+s_{k} r_{k}
$$

with $s_{1}, \ldots, s_{k}, r_{1}, \ldots, r_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous polynomials of degree $<d$.

Examples

- Reducible polynomials have strength ≤ 1.
- The polynomial $y^{2} z-\left(x^{3}+x z^{2}+z^{3}\right)$ has strength 2 .
- The polynomial $x_{1}^{2}+\cdots+x_{n}^{2}$ has strength $\lceil n / 2\rceil$.
- Every polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}$ has strength $\leq n$.

Vec-closed subfunctors of S^{d}

Theorem
Suppose that we have "nicely interacting" Zariski-closed subsets

$$
X_{n} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}, \quad n \in \mathbb{N}
$$

such that $X_{n_{0}} \neq \mathbb{C}\left[x_{1}, \ldots, x_{n_{0}}\right]_{(d)}$ for some n_{0}. Then there is a constant $k \in \mathbb{N}$ such that the strength of any $f \in X_{n}$ is at most k.

Example ("nicely interacting" matrices)

Take $X_{n}=\{$ symmmetric matrices of rank $\leq r\} \subseteq \mathbb{C}^{n \times n}$. Then

- X_{n} is the zero set of some subdeterminants
- for any $P \in \mathbb{C}^{n \times m}$ and any $A \in X_{n}$, we have $P^{T} A P \in X_{m}$
- $X_{r+1} \neq\{$ symmetric $(r+1) \times(r+1)$ matrices $\}$

Vec-closed subfunctors of S^{d}

Theorem

Suppose that we have Zariski-closed subsets

$$
X_{n} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}, \quad n \in \mathbb{N}
$$

with

- $X_{n_{0}} \neq \mathbb{C}\left[x_{1}, \ldots, x_{n_{0}}\right]_{(d)}$ for some n_{0}
- $f \circ L \in X_{m}$ for each linear map $L: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ and each $f \in X_{n}$

Then there is an $k \in \mathbb{N}$ such that the strength of any $f \in X_{n}$ is at most k.
$\left(^{*}\right)$ knowing $n_{0} \Rightarrow$ upperbound on k.

The proof

Fix m such that $X_{m} \neq \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{(d)}$
$\Rightarrow \exists P \neq 0$ so that $P(f)=0$ for all $f \in X_{m}$
We do induction on the degree of the equation P.
$P \neq 0 \Rightarrow P$ has a partial derivative $Q \neq 0$ (with lower degree)
Take $Y_{n}=\left\{f \in X_{n} \mid \forall L: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}\right.$ holds $\left.Q(f \circ L)=0\right\}$
$\operatorname{deg}(Q)<\operatorname{deg}(P) \Rightarrow$ done for polynomials $f \in Y_{n}$.
Consider polynomials in $X_{n} \backslash Y_{n}$.

$$
Y_{n}=\left\{f \in X_{n} \mid \forall L: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}: Q(f \circ L)=0\right\}
$$

If $f \in X_{n}$ and $n \leq m$, then $f=x_{1} r_{1}+\cdots+x_{n} r_{n}$ has strength $\leq m$.
Take $n=m+k$ and $y_{i}=x_{m+i}$. Then

$$
f=g\left(y_{1}, \ldots, y_{k}\right)+\sum_{\left(i_{1}, \ldots, i_{m}\right) \neq 0} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} h_{i_{1}, \ldots, i_{m}}\left(y_{1}, \ldots, y_{k}\right)
$$

has strength at most m plus the strength of g.
$f \notin Y_{n} \Rightarrow Q(f \circ L) \neq 0$ for some $L: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$
$f \in X_{n} \Rightarrow P\left(f \circ L^{\prime}\right)=0$ for all $L^{\prime}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$
$\Rightarrow Q(f \circ L) \cdot g$ is a polynomial in the $h_{i_{1}, \ldots, i_{m}}$

Questions

Is the set $\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)} \mid\right.$ strength $\left.(f)<k\right\}$ Zariski-closed?

- yes for $d=2$

What is the strength of a generic polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{(d)}$?

- $\lceil n / 2\rceil$ for $d=2$

How do you calculate the strength of a polynomial?

- calculate rank of the corresponding matrix for $d=2$

References

Bik, Draisma, Eggermont, Polynomials and tensors of bounded strength, preprint.
圊 Kazhdan, Ziegler, On ranks of polynomials, preprint.
(Derksen, Eggermont, Snowden, Topological noetherianity for cubic polynomials, Alg. Number Th. 11 (2017) 2197-2212.

