
Polynomials of bounded strength

Arthur Bik
University of Bern

28 June 2018, Basel

joint work with Jan Draisma and Rob Eggermont



The strength of a polynomial
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The strength of a polynomial

Definition
The strength of a homogeneous polynomial f ∈ C[x1, . . . , xn] of
degree d ≥ 2 is the minimal k ≥ 0 such that we can write

f = s1r1 + · · ·+ skrk

with s1, . . . , sk, r1, . . . , rk ∈ C[x1, . . . , xn] homogeneous polynomials of
degree < d.

Examples

• Reducible polynomials have strength ≤ 1.

• The polynomial y2z − (x3 + xz2 + z3) has strength 2.

• The polynomial x21 + · · ·+ x2n has strength dn/2e.
• Every polynomial f ∈ C[x1, . . . , xn](d) has strength ≤ n.



The strength of a polynomial

Proposition
For every symmetric matrix A ∈ Cn×n, the polynomial

f = (x1 . . . xn)A(x1 . . . xn)
T

has strength drk(A)/2e.

Remark
f(x) = s1(x)r1(x) + · · ·+ sk(x)rk(x) and y1, . . . , yn are linear forms
⇒ f(y) = s1(y)r1(y) + · · ·+ sk(y)rk(y) has strength ≤ k

Proof.
Change coordinates so that f = x21 + · · ·+ x2r with r = rk(A).
(≤) Use: x21 + x22 = (x1 + ix2)(x1 − ix2)
(≥) Use: 2s1r1 = (x1 . . . xn)(vw

T + wvT )(x1 . . . xn)
T
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Vec-closed subfunctors of Sd

Theorem
Suppose that we have "nicely interacting" Zariski-closed subsets

Xn ⊆ C[x1, . . . , xn](d), n ∈ N

such that Xn0 6= C[x1, . . . , xn0 ](d) for some n0. Then there is a constant
k ∈ N such that the strength of any f ∈ Xn is at most k.

Example ("nicely interacting" matrices)
Take Xn = {symmmetric matrices of rank ≤ r} ⊆ Cn×n. Then

• Xn is the zero set of some subdeterminants

• for any P ∈ Cn×m and any A ∈ Xn, we have P TAP ∈ Xm

• Xr+1 6= {symmetric (r + 1)× (r + 1) matrices}



Vec-closed subfunctors of Sd

Theorem
Suppose that we have Zariski-closed subsets

Xn ⊆ C[x1, . . . , xn](d), n ∈ N

with

• Xn0 6= C[x1, . . . , xn0 ](d) for some n0

• f ◦ L ∈ Xm for each linear map L : Cm → Cn and each f ∈ Xn

Then there is an k ∈ N such that the strength of any f ∈ Xn is at most k.

(*) knowing n0 ⇒ upperbound on k.



The proof

Fix m such that Xm 6= C[x1, . . . , xm](d)
⇒ ∃P 6= 0 so that P (f) = 0 for all f ∈ Xm

We do induction on the degree of the equation P .

P 6= 0⇒ P has a partial derivative Q 6= 0 (with lower degree)

Take Yn = {f ∈ Xn | ∀L : Cn → Cm holds Q(f ◦ L) = 0}

deg(Q) < deg(P )⇒ done for polynomials f ∈ Yn.

Consider polynomials in Xn \ Yn.



Yn = {f ∈ Xn | ∀L : Cn → Cm : Q(f ◦ L) = 0}

If f ∈ Xn and n ≤ m, then f = x1r1 + · · ·+ xnrn has strength ≤ m.

Take n = m+ k and yi = xm+i. Then

f = g(y1, . . . , yk) +
∑

(i1,...,im)6=0

xi11 . . . ximm hi1,...,im(y1, . . . , yk)

has strength at most m plus the strength of g.

f 6∈ Yn ⇒ Q(f ◦ L) 6= 0 for some L : Cn → Cm

f ∈ Xn ⇒ P (f ◦ L′) = 0 for all L′ : Cn → Cm

⇒ Q(f ◦ L) · g is a polynomial in the hi1,...,im



Questions

Is the set {f ∈ C[x1, . . . , xn](d) | strength(f) < k} Zariski-closed?

• yes for d = 2

What is the strength of a generic polynomial in C[x1, . . . , xn](d)?

• dn/2e for d = 2

How do you calculate the strength of a polynomial?

• calculate rank of the corresponding matrix for d = 2
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