h

Polynomials of bounded strength

Arthur Bik University of Bern

28 June 2018, Basel

joint work with Jan Draisma and Rob Eggermont

h

$$x_{1}x_{2}x_{5} + x_{2}x_{3}x_{5} + x_{3}x_{4}x_{5} + x_{1}x_{5}^{2} + x_{2}x_{5}^{2} + x_{3}x_{5}^{2} - x_{4}x_{5}^{2} + x_{3}x_{2}x_{5} + x_{2}x_{3}x_{6} + x_{2}x_{3}x_{6} + x_{3}x_{4}x_{6} - x_{1}x_{6}^{2} - x_{2}x_{6}^{2} - x_{3}x_{6}^{2} + x_{4}x_{6}^{2} + x_{1}x_{2}x_{7} + x_{2}x_{3}x_{7} + x_{3}x_{4}x_{7} - x_{1}x_{7}^{2} - x_{2}x_{7}^{2} - x_{3}x_{7}^{2} + x_{4}x_{7}^{2} + x_{1}x_{2}x_{8} + x_{2}x_{3}x_{8} + x_{3}x_{4}x_{8} + x_{1}x_{8}^{2} + x_{2}x_{8}^{2} + x_{3}x_{8}^{2} - x_{4}x_{8}^{2}$$

$$(x_1 + x_2 + x_3 - x_4)(x_5^2 - x_6^2 - x_7^2 + x_8^2) + (x_1x_2 + x_2x_3 + x_3x_4)(x_5 + x_6 + x_7 + x_8)$$

Definition

The strength of a homogeneous polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$ of degree $d \geq 2$ is the minimal $k \geq 0$ such that we can write

$$f = s_1 r_1 + \dots + s_k r_k$$

with $s_1, \ldots, s_k, r_1, \ldots, r_k \in \mathbb{C}[x_1, \ldots, x_n]$ homogeneous polynomials of degree < d.

Examples

- Reducible polynomials have strength ≤ 1 .
- The polynomial $y^2z (x^3 + xz^2 + z^3)$ has strength 2.
- The polynomial $x_1^2 + \cdots + x_n^2$ has strength $\lceil n/2 \rceil$.
- Every polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ has strength $\leq n$.

Proposition

For every symmetric matrix $A \in \mathbb{C}^{n \times n}$, the polynomial

$$f = (x_1 \ldots x_n) A (x_1 \ldots x_n)^T$$

has strength $\lceil \operatorname{rk}(A)/2 \rceil$.

Remark

 $f(x) = s_1(x)r_1(x) + \dots + s_k(x)r_k(x)$ and y_1, \dots, y_n are linear forms $\Rightarrow f(y) = s_1(y)r_1(y) + \dots + s_k(y)r_k(y)$ has strength $\leq k$

Proof.

Change coordinates so that $f = x_1^2 + \dots + x_r^2$ with r = rk(A). (\leq) Use: $x_1^2 + x_2^2 = (x_1 + ix_2)(x_1 - ix_2)$ (\geq) Use: $2s_1r_1 = (x_1 \dots x_n)(vw^T + wv^T)(x_1 \dots x_n)^T$

Definition

The strength of a homogeneous polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$ of degree $d \geq 2$ is the minimal $k \geq 0$ such that we can write

$$f = s_1 r_1 + \dots + s_k r_k$$

with $s_1, \ldots, s_k, r_1, \ldots, r_k \in \mathbb{C}[x_1, \ldots, x_n]$ homogeneous polynomials of degree < d.

Examples

- Reducible polynomials have strength ≤ 1 .
- The polynomial $y^2z (x^3 + xz^2 + z^3)$ has strength 2.
- The polynomial $x_1^2 + \cdots + x_n^2$ has strength $\lceil n/2 \rceil$.
- Every polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]_{(d)}$ has strength $\leq n$.

Vec-closed subfunctors of S^d

Theorem

Suppose that we have "nicely interacting" Zariski-closed subsets

 $X_n \subseteq \mathbb{C}[x_1, \dots, x_n]_{(d)}, \quad n \in \mathbb{N}$

such that $X_{n_0} \neq \mathbb{C}[x_1, \dots, x_{n_0}]_{(d)}$ for some n_0 . Then there is a constant $k \in \mathbb{N}$ such that the strength of any $f \in X_n$ is at most k.

Example ("nicely interacting" matrices)

Take $X_n = \{$ symmetric matrices of rank $\leq r \} \subseteq \mathbb{C}^{n \times n}$. Then

- X_n is the zero set of some subdeterminants
- for any $P \in \mathbb{C}^{n \times m}$ and any $A \in X_n$, we have $P^T A P \in X_m$
- $X_{r+1} \neq \{$ symmetric $(r+1) \times (r+1)$ matrices $\}$

Vec-closed subfunctors of S^d

Theorem

Suppose that we have Zariski-closed subsets

$$X_n \subseteq \mathbb{C}[x_1, \dots, x_n]_{(d)}, \quad n \in \mathbb{N}$$

with

• $X_{n_0} \neq \mathbb{C}[x_1, \ldots, x_{n_0}]_{(d)}$ for some n_0

• $f \circ L \in X_m$ for each linear map $L \colon \mathbb{C}^m \to \mathbb{C}^n$ and each $f \in X_n$

Then there is an $k \in \mathbb{N}$ such that the strength of any $f \in X_n$ is at most k.

(*) knowing $n_0 \Rightarrow$ upperbound on k.

The proof

UNIVERSITÄT BERN

Fix *m* such that $X_m \neq \mathbb{C}[x_1, \dots, x_m]_{(d)}$ $\Rightarrow \exists P \neq 0$ so that P(f) = 0 for all $f \in X_m$

We do induction on the degree of the equation P.

 $P \neq 0 \Rightarrow P$ has a partial derivative $Q \neq 0$ (with lower degree)

Take $Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^n \to \mathbb{C}^m \text{ holds } Q(f \circ L) = 0 \}$

 $\deg(Q) < \deg(P) \Rightarrow$ done for polynomials $f \in Y_n$.

Consider polynomials in $X_n \setminus Y_n$.

$$Y_n = \{ f \in X_n \mid \forall L \colon \mathbb{C}^n \to \mathbb{C}^m : Q(f \circ L) = 0 \}$$

UNIVERSITÄT BERN

If $f \in X_n$ and $n \leq m$, then $f = x_1r_1 + \cdots + x_nr_n$ has strength $\leq m$.

Take n = m + k and $y_i = x_{m+i}$. Then

$$f = g(y_1, \dots, y_k) + \sum_{(i_1, \dots, i_m) \neq 0} x_1^{i_1} \dots x_m^{i_m} h_{i_1, \dots, i_m}(y_1, \dots, y_k)$$

has strength at most m plus the strength of g.

$$f \notin Y_n \Rightarrow Q(f \circ L) \neq 0$$
 for some $L \colon \mathbb{C}^n \to \mathbb{C}^m$

$$f \in X_n \Rightarrow P(f \circ L') = 0 \text{ for all } L': \mathbb{C}^n \to \mathbb{C}^m$$

$$\Rightarrow Q(f \circ L) \cdot g \text{ is a polynomial in the } h_{i_1, \dots, i_r}$$

Questions

UNIVERSITÄT BERN

Is the set $\{f \in \mathbb{C}[x_1, \dots, x_n]_{(d)} \mid \mathsf{strength}(f) < k\}$ Zariski-closed?

• yes for d = 2

What is the strength of a generic polynomial in $\mathbb{C}[x_1, \ldots, x_n]_{(d)}$?

•
$$\lceil n/2 \rceil$$
 for $d=2$

How do you calculate the strength of a polynomial?

• calculate rank of the corresponding matrix for d=2

References

- Bik, Draisma, Eggermont, *Polynomials and tensors of bounded strength*, preprint.
- Kazhdan, Ziegler, On ranks of polynomials, preprint.
- Derksen, Eggermont, Snowden, Topological noetherianity for cubic polynomials, Alg. Number Th. 11 (2017) 2197-2212.