Jordan Algebras of Symmetric Matrices

Arthur Bik

Applied Algebra and Analysis Online Seminar

15 January 2021
joint work with Henrik Eisenmann and Bernd Sturmfels

Spaces of Symmetric Matrices

Let \mathbb{S}^{n} be the space of symmetric $n \times n$ matrices over \mathbb{C}.
The Grassmannian $\operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ consists of m-dimensional $\mathcal{L} \subseteq \mathbb{S}^{n}$.
We here consider regular subspaces $\mathcal{L} \subseteq \mathbb{S}^{n}$:

$$
\mathcal{L}_{\mathrm{inv}}:=\{X \in \mathcal{L} \mid \operatorname{det}(X) \neq 0\} \neq \emptyset
$$

Definition

The reciprocal variety \mathcal{L}^{-1} is $\overline{\left\{X^{-1} \mid X \in \mathcal{L}_{\text {inv }}\right\}} \subseteq \mathbb{S}^{n}$.

Goal

Understand the \mathcal{L} where the variety \mathcal{L}^{-1} is a linear space in \mathbb{S}^{n}.
The motivation for this goal arises in optimization (semidefinite programming) and in statistics (Gaussian models that are linear in covariance matrices and concentration matrices).

Spaces of Symmetric Matrices

Examples

$$
\begin{aligned}
& \left(\begin{array}{llllll}
z & y & x & & & \\
y & x & & & & \\
x & & & & & \\
& & & y & x & \\
& & & x & & \\
& & & & & x
\end{array}\right),\left(\begin{array}{lllllll}
& y & z & & & x \\
y & & & & x & \\
z & & & x & & \\
& & x & & \\
& x & & & & \\
x & & & &
\end{array}\right)
\end{aligned}
$$

Jordan Spaces of Symmetric Matrices

Theorem (B-Eisenmann-Sturmfels 2020, Jensen 1988)

For $\mathcal{L} \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ and $U \in \mathcal{L}_{\text {inv }}$, the following are equivalent:
(a) The reciprocal variety \mathcal{L}^{-1} is also a linear space in \mathbb{S}^{n}.
(b) \mathcal{L} is a subalgebra of the Jordan algebra $\left(\mathbb{S}^{n}, \bullet_{U}\right)$.
(c) \mathcal{L}^{-1} equals \mathcal{L} up to congruence; namely $\mathcal{L}^{-1}=U^{-1} \mathcal{L} U^{-1}$.

We say that \mathcal{L} is a Jordan space when these equivalent conditions are satisfied.

Definition

For $U \in \mathbb{S}_{\text {inv }}^{n}$, we define an algebra structure on \mathbb{S}^{n} by

$$
X \bullet_{U} Y:=\left(X U^{-1} Y+Y U^{-1} X\right) / 2
$$

for all $X, Y \in \mathbb{S}^{n}$. This makes \mathbb{S}^{n} into a (unital) Jordan algebra:

$$
X^{\bullet 2} \bullet(X \bullet Y)=X \bullet\left(X^{\bullet 2} \bullet Y\right)
$$

Jordan Spaces of Symmetric Matrices

Theorem (B-Eisenmann-Sturmfels 2020, Jensen 1988)

For $\mathcal{L} \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ and $U \in \mathcal{L}_{\text {inv }}$, the following are equivalent:
(a) The reciprocal variety \mathcal{L}^{-1} is also a linear space in \mathbb{S}^{n}.
(b) \mathcal{L} is a subalgebra of the Jordan algebra $\left(\mathbb{S}^{n}, \bullet_{U}\right)$.
(c) \mathcal{L}^{-1} equals \mathcal{L} up to congruence; namely $\mathcal{L}^{-1}=U^{-1} \mathcal{L} U^{-1}$.

We say that \mathcal{L} is a Jordan space when these equivalent conditions are satisfied.

Remark 1

For congruent subspaces \mathcal{L} and $\mathcal{L}^{\prime}=P \mathcal{L} P^{\top}$:
\mathcal{L} is a Jordan space $\Leftrightarrow \mathcal{L}^{\prime}$ is also a Jordan space

Remark 2

All choices of unit U lead to isomorphic Jordan algebras $\left(\mathcal{L}, \bullet_{U}\right)$.

Projective spaces

Let V be a vector space.

Definition

The projective space

$$
\mathbb{P}(V):=\{[v] \mid v \in V \backslash\{0\}\}
$$

where $[v]=[w]$ when $v=\lambda w$ for some $\lambda \neq 0$.
A subvariety of $\mathbb{P}(V)$ is defined by homogeneous polynomials:

$$
\text { for some } d \geq 0 \text { : } \quad f(\lambda v)=\lambda^{d} f(v) \text { for all } \lambda \in \mathbb{C} \text { and } v \in V
$$

Theorem

Projective spaces are complete. So projections of closed subsets $Y \subseteq X \times \mathbb{P}(V)$ to X are closed. In particular, images from projective spaces are closed.

Projective spaces

Example

The image of the map

$$
\begin{aligned}
\mathbb{P}\left(\mathbb{C}^{2}\right) \times \mathbb{P}\left(\mathbb{C}^{n}\right) & \rightarrow \mathbb{P}\left(\mathbb{C}^{n} \times \mathbb{C}^{n}\right) \\
([\lambda, \mu],[v]) & \mapsto[\lambda v, \mu v]
\end{aligned}
$$

is closed.
In fact, it is the set of linearly dependent vectors in $\mathbb{C}^{n} \times \mathbb{C}^{n}$.
So a point $\left[\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right]$ is in the image of the map if and only if the matrix

$$
\left(\begin{array}{lll}
x_{1} & \cdots & x_{n} \\
y_{1} & \cdots & y_{n}
\end{array}\right)
$$

has rank ≤ 1. The polynomials $x_{i} y_{j}-x_{j} y_{i}$ are homogeneous.

The variety of Jordan spaces

Let V be a vector space of dimension n.
Coordinate systems for the Grassmannian
A subspace $\mathcal{L} \in \operatorname{Gr}(m, V)$ can be represented by:

	primal	dual
Stiefel	$\left(H_{1}, \ldots, H_{n-m}\right) \in\left(V^{*}\right)^{n-m}$	$\left(X_{1}, \ldots, X_{m}\right) \in V^{m}$
Plücker	$H_{1} \wedge \cdots \wedge H_{n-m} \in \Lambda^{n-m} V^{*}$	$X_{1} \wedge \cdots \wedge X_{m} \in \Lambda^{m} V$

Here

$$
\mathcal{L}=\left\{v \in V \mid H_{1}(v), \ldots, H_{n-m}(v)=0\right\}=\operatorname{span}\left(X_{1}, \ldots, X_{m}\right)
$$

Proposition

The subset $\operatorname{Jo}\left(m, \mathbb{S}^{n}\right)$ consisting of all Jordan spaces \mathcal{L} is a subvariety of $\operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$.

The variety of Jordan spaces

Proof

The subspace $\mathcal{L} \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ is a Jordan space \Leftrightarrow
(b) \mathcal{L} is a subalgebra of the Jordan algebra $\left(\mathbb{S}^{n}, \bullet_{U}\right)$.
for all $U \in \mathcal{L}_{\text {inv }}$.
Let X_{1}, \ldots, X_{m} be a basis of \mathcal{L}.
(Dual Stiefel coordinates)
Then (b) for all $U \in \mathcal{L}_{\text {inv }} \Leftrightarrow$

$$
X_{1}, \ldots, X_{m}, X_{i} \bullet_{U} X_{j}
$$

are linearly dependent for all $1 \leq i \leq j \leq m$ and $U \in \mathcal{L}_{\text {inv }}$

The variety of Jordan spaces

Proof

The subspace $\mathcal{L} \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ is a Jordan space \Leftrightarrow
(b) \mathcal{L} is a subalgebra of the Jordan algebra $\left(\mathbb{S}^{n}, \bullet_{U}\right)$.
for all $U \in \mathcal{L}_{\text {inv }}$.
Let X_{1}, \ldots, X_{m} be a basis of \mathcal{L}.
(Dual Stiefel coordinates)
Then (b) for all $U \in \mathcal{L}_{\text {inv }} \Leftrightarrow$

$$
X_{1}, \ldots, X_{m},\left(X_{i} U^{-1} X_{j}+X_{j} U^{-1} X_{i}\right) / 2
$$

are linearly dependent for all $1 \leq i \leq j \leq m$ and $U \in \mathcal{L}_{\text {inv }}$

The variety of Jordan spaces

Proof

The subspace $\mathcal{L} \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ is a Jordan space \Leftrightarrow
(b) \mathcal{L} is a subalgebra of the Jordan algebra $\left(\mathbb{S}^{n}, \bullet_{U}\right)$. for all $U \in \mathcal{L}_{\text {inv }}$.

Let X_{1}, \ldots, X_{m} be a basis of \mathcal{L}.
(Dual Stiefel coordinates)
Then (b) for all $U \in \mathcal{L}_{\text {inv }} \Leftrightarrow$

$$
X_{1}, \ldots, X_{m},\left(X_{i} \operatorname{adj}(U) X_{j}+X_{j} \operatorname{adj}(U) X_{i}\right)
$$

are linearly dependent for all $1 \leq i \leq j \leq m$ and $U \in \mathcal{L}_{\text {inv }}$

The variety of Jordan spaces

Proof

The subspace $\mathcal{L} \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ is a Jordan space \Leftrightarrow
(b) \mathcal{L} is a subalgebra of the Jordan algebra $\left(\mathbb{S}^{n}, \bullet_{U}\right)$.
for all $U \in \mathcal{L}_{\text {inv }}$.
Let X_{1}, \ldots, X_{m} be a basis of \mathcal{L}.
(Dual Stiefel coordinates)
Then (b) for all $U \in \mathcal{L}_{\text {inv }} \Leftrightarrow$

$$
X_{1}, \ldots, X_{m},\left(X_{i} \operatorname{adj}(U) X_{j}+X_{j} \operatorname{adj}(U) X_{i}\right)
$$

are linearly dependent for all $1 \leq i \leq j \leq m$ and

$$
U=c_{1} X_{1}+\ldots+c_{m} X_{m} \in \mathcal{L}
$$

for all $c_{1}, \ldots, c_{m} \in \mathbb{C}$.

Jordan pencils, nets, webs, ...

We call elements of $\operatorname{Gr}\left(2, \mathbb{S}^{n}\right)$ pencils of symmetric matrices.
Congruence orbits of regular pencils are classified by Segre symbols.
Definition
Let $\mathcal{L} \in \operatorname{Gr}\left(2, \mathbb{S}^{n}\right)$ be a regular pencil. The Segre symbol σ of \mathcal{L} is a multiset of partitions adding up to n.

Pick a basis X, Y of \mathcal{L} with $Y \in \mathcal{L}_{\text {inv }}$. Then the Segre symbol of \mathcal{L} is given by sizes of Jordan blocks of $X Y^{-1}$.

Examples

$$
\left(\begin{array}{lllll}
x & & & & \\
& x & & & \\
& & y & & \\
& & & y & \\
& & & & y
\end{array}\right) \text { and }\left(\begin{array}{lllll}
y & x & & & \\
x & & & & \\
& & y & & \\
& & & y & \\
& & & & y
\end{array}\right)
$$

have Segre symbols $[(1,1),(1,1,1)]$ and $[(2),(1,1,1)]$.

Jordan pencils, nets, webs, ...

We know which Segre symbols correspond to Jordan pencils. Theorem (Fevola-Mandelshtam-Sturmfels 2020)
A pencil is a Jordan space exactly when its Jordan symbol is of the form $\sigma=[(1, \ldots, 1),(1, \ldots, 1)]$ or $\sigma=[(2, \ldots, 2,1 \ldots, 1)]$.

The irreducible components of $\operatorname{Jo}\left(2, \mathbb{S}^{n}\right)$ are the orbits closures of the diagonalizable pencils.

Jordan pencils, nets, webs, ...

We call elements of $\operatorname{Gr}\left(3, \mathbb{S}^{n}\right)$ nets of symmetric matrices.
For $n=2$, we have $\operatorname{Gr}\left(3, \mathbb{S}^{2}\right)=\left\{\mathbb{S}^{2}\right\}$ and \mathbb{S}^{2} is a Jordan net.
For $n=3$, all Jordan nets are congruent to one of:

$$
\left(\begin{array}{lll}
x & & \\
& y & \\
& & z
\end{array}\right) \rightarrow\left(\begin{array}{lll}
x & & \\
& z & y \\
& y &
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
z & y & x \\
y & x & \\
x & &
\end{array}\right)
$$

For $n=4$, the diagram becomes more interesting.

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Theorem

Every (unital) Jordan algebra \mathcal{A} of dimension 3 over \mathbb{C} is isomorphic to the Jordan algebra $\mathbb{C}\{U, X, Y\}$ with unit U, where the product is given by

$$
\begin{aligned}
& 1 \text { (a): } X^{\bullet 2}=X, Y^{\bullet 2}=Y \text { and } X \bullet Y=0 \text {, } \\
& \text { (b) : } X^{\bullet 2}=U, Y^{\bullet 2}=U \text { and } X \bullet Y=0 \text {, } \\
& 2 \text { (a): } X^{\bullet 2}=X, Y^{\bullet 2}=0 \text { and } X \bullet Y=0 \text {, } \\
& \text { (b) : } X^{\bullet 2}=X, Y^{\bullet 2}=0 \text { and } X \bullet Y=Y / 2 \text {, } \\
& 3 \text { (a): } X^{\bullet 2}=Y, Y^{\bullet 2}=0 \text { and } X \bullet Y=0 \text {, } \\
& \text { (b) : } X^{\bullet 2}=0, Y^{\bullet 2}=0 \text { and } X \bullet Y=0 \text {. }
\end{aligned}
$$

How to get all orbits isomorphic to $1(\mathrm{a})$?

(1) Apply a congruence: we get $U=\mathbf{1}_{n}$
(2) Apply an orthogonal congruence: we get $X=\operatorname{Diag}\left(\mathbf{1}_{k}, \mathbf{0}_{n-k}\right)$
(3) Now we see that $Y=\operatorname{Diag}\left(\mathbf{0}_{k}, Z\right)$ with $Z^{2}=Z$
(4) Apply an orthogonal congruence: we get $Z=\operatorname{Diag}\left(\mathbf{1}_{\ell}, \mathbf{0}_{n-k-\ell}\right)$

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Theorem

Every (unital) Jordan algebra \mathcal{A} of dimension 3 over \mathbb{C} is isomorphic to the Jordan algebra $\mathbb{C}\{U, X, Y\}$ with unit U, where the product is given by

$$
\begin{aligned}
1(\mathrm{a}): X^{\bullet 2} & =X, Y^{\bullet 2} \\
\text { (b) }: X^{\bullet 2} & =U \text { and } X \bullet Y=0, \\
2(\mathrm{a}): X^{\bullet 2} & =U \text { and } X \bullet Y=0, \\
\text { (b) }: X^{\bullet 2} & =X, Y^{\bullet 2}=0 \text { and } X \bullet Y=0, \\
3(\mathrm{a}): X^{\bullet 2} & =Y, Y^{\bullet 2}=0 \text { and } X \bullet Y=Y / 2, \\
\text { (b) }: X^{\bullet 2} & =0, Y^{\bullet 2}=0 \text { and } X \bullet Y=0,
\end{aligned}
$$

Question - orbits of type 3(b)
(1) Apply a congruence: we get $U=\mathbf{1}_{n}$
(2) Now we see that $X^{2}=Y^{2}=X Y+Y X=0$
(3) Can we classify $\mathbb{C}\{X, Y\}$ up to orthogonal congruence?

Jordan nets of symmetric 4×4 matrices

Degenerating orbits

Go to nets of quadrics: $\mathcal{L} \rightsquigarrow(a, b, c, d) \mathcal{L}(a, b, c, d)^{\top} \subseteq \mathbb{C}[a, b, c, d]_{2}$

$$
\operatorname{Diag}\left(x \mathbf{1}_{2}, y, z\right) \rightsquigarrow \operatorname{span}\left(a^{2}+b^{2}, c^{2}, d^{2}\right)
$$

The group GL(4) now acts using coordinate transformations.
The orbit of $\operatorname{span}\left(a^{2}+b^{2}, c^{2}, d^{2}\right)$ contains

$$
\operatorname{span}\left(a^{2}+b^{2},(d+t c)^{2}, d^{2}\right)=\operatorname{span}\left(a^{2}+b^{2}, 2 c d+t c^{2}, d^{2}\right)
$$

for all $t \neq 0$. Letting $t \rightarrow 0$, we get

$$
\operatorname{span}\left(a^{2}+b^{2}, 2 c d, d^{2}\right) \leftarrow\left(\begin{array}{llll}
x & & & \\
& x & & \\
& & z & y \\
& & y &
\end{array}\right)
$$

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Proposition

$$
\left(\begin{array}{llll}
x & & & \\
& x & & \\
& & y & \\
& & & z
\end{array}\right) \text { does not degenerate to }\left(\begin{array}{llll}
x & x & z & \\
z & & & y \\
& & y &
\end{array}\right) \text {. }
$$

Proof.

The closed set

$$
\left\{(\mathcal{L}, X) \in \operatorname{Gr}\left(m, \mathbb{S}^{n}\right) \times \mathbb{P}\left(\mathbb{S}^{n}\right) \mid X \in \mathcal{L}, \operatorname{rk}(X) \leq 1\right\}
$$

projects to $\operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$ along the complete variety $\mathbb{P}\left(\mathbb{S}^{n}\right)$.
This projection is therefore closed. It consists of all spaces \mathcal{L} where

$$
\min \{\operatorname{rk}(X) \mid X \in \mathcal{L} \backslash\{0\}\} \leq 1
$$

This condition holds for the space on the left. So also for all its degenerations. And, it does not hold for the space on the right.

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Proposition

$$
\left(\begin{array}{llll}
x & & & \\
& x & z & y \\
& & y & y
\end{array}\right) \text { does not degenerate to }\left(\begin{array}{llll}
y & & & x \\
& z & x & \\
x & x & &
\end{array}\right) \text {. }
$$

Proof.

The closed subset
$\left\{(\mathcal{L}, \mathcal{P}) \in \operatorname{Gr}\left(3, \mathbb{S}^{n}\right) \times \operatorname{Gr}\left(2, \mathbb{S}^{n}\right) \left\lvert\, \begin{array}{c}\mathcal{P} \subseteq \mathcal{L}, \operatorname{det}(\mathcal{P})=0, \\ \forall Q \in \mathbb{C}^{2 \times 4}: \operatorname{det}\left(Q \mathcal{P} Q^{\top}\right)=\square\end{array}\right.\right\}$
projects to a closed subset of $\operatorname{Gr}\left(m, \mathbb{S}^{n}\right)$.
The orbit of the space on the left is in this subset. The space on the right is not.

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Proposition

$$
\left(\begin{array}{llll}
x & y & & \\
y & z & & \\
& & x & y \\
& & z
\end{array}\right) \text { does not degenerate to }\left(\begin{array}{lll}
z & y & x \\
y & x & \\
x & & \\
& & \\
&
\end{array}\right) \text {; }
$$

Proof.

Let X, Y, Z be a basis of \mathcal{L} and consider the following condition: For all $x, y, z \in \mathbb{C}$ and all $U \in \mathcal{L}_{\text {inv }}$,

$$
U, \quad W, \quad W \bullet_{U} W
$$

are linearly dependent for $W=x X+y Y+z Z$.
This condition is closed, is satisfied by the orbit of the space on the left and not satisfied by the space on the right.

Jordan nets of symmetric 4×4 matrices

Jordan nets of symmetric 4×4 matrices

Proposition

The condition "determinant of form $f g^{3}$ with f, g linear" is closed?

Proof.

The condition states that

$$
(X, Y, Z) \mapsto \operatorname{det}(x X+y Y+z Z) \in \mathbb{C}[x, y, z]_{4}
$$

maps a basis X, Y, Z of \mathcal{L} into $\left\{f g^{3} \mid f, g \in \mathbb{C}[x, y, z]_{1}\right\}$.
This set is (the cone of) the image of the map

$$
\begin{aligned}
\mathbb{P}\left(\mathbb{C}[x, y, z]_{1}\right) \times \mathbb{P}\left(\mathbb{C}[x, y, z]_{1}\right) & \rightarrow \mathbb{P}\left(\mathbb{C}[x, y, z]_{4}\right) \\
([f],[g]) & \mapsto\left[f g^{3}\right]
\end{aligned}
$$

and hence closed.

Future directions

(1) Study m-dimensional subspaces of \mathbb{S}^{n} for other (m, n).

- Classification of Jordan nets in \mathbb{S}^{n}.
- Finding all the degenerations.
- Are (variations of) the closed conditions we looked at enough to show that these degenerations are the only ones?
(2) Study nonregular subspaces (pencils) \mathcal{L}, i.e. where $\operatorname{det}(\mathcal{L})=0$.

Thank you for your attention!

References

R Arthur Bik, Henrik Eisenmann, Bernd Sturmfels
Jordan Algebras of Symmetric Matrices
preprint
R Claudia Fevola, Yelena Mandelshtam, Bernd Sturmfels Pencils of Quadrics: Old and New
preprint

